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Weed detection and classification using computer vision and deep learning techniques have emerged 
as crucial tools for precision agriculture, offering automated solutions for sustainable farming 
practices. This study presents a comprehensive approach to weed identification across multiple growth 
stages, addressing the challenges of detecting and classifying diverse weed species throughout their 
developmental cycles. We introduce two extensive datasets: the Alpha Weed Dataset (AWD) with 
203,567 images and the Beta Weed Dataset (BWD) with 120,341 images, collectively documenting 
16 prevalent weed species across 11 growth stages. The datasets were preprocessed using both 
traditional computer vision techniques and the advanced SAM-2 model, ensuring high-quality 
annotations with segmentation masks and precise bounding boxes. Our research evaluates several 
state-of-the-art object detection architectures, including DINO Transformer (with ResNet-101 and Swin 
backbones), Detection Transformer (DETR), EfficientNet B4, YOLO v8, and RetinaNet. Additionally, 
we propose a novel WeedSwin Transformer architecture specifically designed to address the unique 
challenges of weed detection, such as complex morphological variations and overlapping vegetation 
patterns. Through rigorous experimentation, WeedSwin demonstrated superior performance, 
achieving 0.993 ± 0.004 mAP and 0.985 mAR while maintaining practical processing speeds of 218.27 
FPS, outperforming existing architectures across various metrics. The comprehensive evaluation across 
different growth stages reveals the robustness of our approach, particularly in detecting challenging 
“driver weeds” that significantly impact agricultural productivity. By providing accurate, automated 
weed identification capabilities, this research establishes a foundation for more efficient and 
environmentally sustainable weed management practices. The demonstrated success of the WeedSwin 
architecture, combined with our extensive temporal datasets, represents a significant advancement in 
agricultural computer vision, supporting the evolution of precision farming techniques while promoting 
reduced herbicide usage and improved crop management efficiency.
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Agriculture has served as the cornerstone of human civilization throughout history, playing a fundamental role 
in the sustenance and advancement of our species. In the modern era, successful agricultural practices extend 
far beyond traditional farming methods, increasingly relying on sophisticated precision agriculture techniques, 
particularly Site-Specific Farm Management (SSFM)1. This advanced approach requires accurate and timely 
identification, spatial mapping, and quantitative assessment of both crops and weeds within agricultural 
landscapes2. The challenge of weed management has become increasingly critical in modern agriculture, 
particularly in the diverse agricultural regions of the United States3. The country’s unique combination of 
climate variations and fertile soil conditions, while ideal for crop cultivation, simultaneously creates optimal 
conditions for the proliferation of numerous weed species. These unwanted plants pose a significant threat to 
crop yields by competing for essential resources, including water, nutrients, and sunlight4. The impact of weed 
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invasion extends beyond immediate crop competition, affecting agricultural productivity, economic stability, 
and ecosystem balance.

Traditional weed control methodologies, primarily dependent on broad-spectrum herbicides or manual 
removal techniques, have shown increasing limitations5,6. These conventional approaches raise environmental 
concerns due to chemical runoff, face challenges with herbicide-resistant weed populations, and often prove 
economically inefficient due to high labor costs and resource utilization. Furthermore, these methods can 
potentially harm beneficial organisms and impact long-term soil health7. The emergence of advanced technologies 
in computer vision and deep learning has opened new avenues for addressing these agricultural challenges. 
Modern object detection and classification techniques, when applied to weed identification, offer promising 
solutions for real-time, automated weed management systems8. However, significant research gaps persist in this 
domain, particularly in addressing the temporal dynamics of weed development. Existing studies predominantly 
rely on limited datasets or images captured at specific growth stages, failing to represent the dynamic nature of 
weed development throughout their lifecycle9,10. This limitation is particularly concerning as understanding 
and accurately identifying weed growth stages is crucial for several reasons. First, the effectiveness of herbicide 
applications varies significantly depending on the weed’s growth stage, with early growth stages typically being 
more susceptible to control measures11. Second, different growth stages present distinct morphological features 
that affect detection accuracy, making it essential for automated systems to adapt to these variations. Third, 
the competitive impact of weeds on crops varies throughout their growth cycle, with certain stages being more 
detrimental to crop yield than others. This temporal aspect of weed-crop competition necessitates precise timing 
of control measures, which can only be achieved through accurate growth stage identification12.

Beyond the temporal challenges, another significant limitation is that many available datasets focus on a 
narrow range of weed species, not accurately reflecting the diverse weed populations encountered in real 
agricultural settings. This lack of species diversity in training data presents a substantial barrier to developing 
robust, widely applicable weed detection systems. Our research directly addresses these limitations through 
a comprehensive study focusing on 16 prevalent weed species found in Midwestern cropping systems of the 
USA, documenting their development from the seedling stage through 11 weeks of growth. The study involved 
cultivation and systematic labeling of weed specimens in a controlled greenhouse environment, ensuring 
accurate tracking and documentation throughout the growth cycle. Our key research contributions are: 

 1. Development of two unique datasets comprising 203,567 images and 120,341 images, capturing comprehen-
sive growth cycles of 16 of the most common and troublesome weed species in Midwestern USA cropping 
systems.

 2. Meticulous labeling of datasets, categorized by species and growth stage (week-wise), providing a compre-
hensive resource for weed identification research.

 3. Implementation of advanced detection architectures including DINO13 Transformer with ResNet14 and 
Swin15 transformer backbones, Detection Transformer (DETR)16, EfficientNet B417, YOLO v818, and Reti-
naNet19.

 4. Creation of a novel WeedSwin Transformer architecture, optimized for object detection and classification, 
based on the transformer framework.

 5. Comprehensive comparison of model performance, providing evidence-based recommendations for re-
al-world agricultural applications.

The selection of these specific models was driven by their proven capabilities in object detection tasks. The 
DINO Transformer, implemented with both ResNet14 and Swin15 backbones, offers superior accuracy in object 
detection13. DETR introduces an innovative transformer-based approach, particularly effective in handling 
complex scenes and object relationships16. EfficientNet-B417, renowned for its compound scaling method that 
optimally balances network depth, width, and resolution, delivers exceptional feature extraction capabilities 
while maintaining computational efficiency through its mobile-first architecture design. RetinaNet19 contributes 
its efficient focal loss function, specifically addressing class imbalance challenges common in detection tasks. Our 
novel WeedSwin transformer architecture, built upon the Swin15 transformer backbone, represents a significant 
advancement in specialized weed detection capabilities. This comprehensive approach to weed detection and 
classification represents a significant step forward in agricultural technology. The research not only contributes 
to the growing field of AI-assisted agriculture but also provides practical, implementable solutions for farmers 
and agricultural professionals. By developing more accurate and efficient weed detection systems, we pave the 
way for enhanced precision agriculture techniques that can significantly reduce herbicide use, lower production 
costs, and minimize environmental impact while improving overall agricultural sustainability.

The remainder of this paper is organized as follows: Section ‘Literature review’ reviews relevant literature 
and recent advancements in weed detection using deep learning approaches. Section ‘Methods’ details our 
comprehensive data collection methodology and preprocessing pipeline, including the greenhouse setup, image 
acquisition protocols, and data curation processes, along with presenting our methodological framework, 
outlining the experimental design and implementation strategies. Section ‘Models and algorithms’ provides an 
in-depth description of the architectural components and implementation details of all models, including our 
novel WeedSwin architecture. Section ‘Experimental results’ presents a thorough analysis of experimental results, 
including comparative performance metrics and model evaluations across different growth stages. Section 
‘Ablation study’ systematically evaluates the contribution of different architectural components to the WeedSwin 
model’s performance through controlled experiments with varied configurations. Section ‘Discussion’ outlines 
the broader implications of our findings for precision agriculture, addressing both the technical achievements 
and practical applications for USA farming communities. Finally, Section. ‘Conclusions’ summarizes evidence-
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based recommendations for implementing these detection systems in real-world agricultural settings and 
outlines promising directions for future research.

Literature review
In the realm of precision agriculture, the accurate detection and classification of weeds are pivotal for optimizing 
herbicide usage and promoting sustainable farming practices. Recent advancements in deep learning and 
computer vision have significantly enhanced the capabilities of weed detection systems, transitioning from 
traditional methods to sophisticated, data-driven approaches. This review explores the evolution of these 
technologies, organized into key thematic areas.

Architectural innovations and dataset development
Recent advances in deep learning architectures have transformed weed detection capabilities in precision 
agriculture20. Hussain et al.21 demonstrated EfficientNet’s superior performance in detecting common 
lambsquarters (Chenopodium album L.), achieving 92–97% accuracy and introducing the Phase-Height-Angle 
(PHA) format, which improved detection accuracy 1.35-fold over conventional depth imaging. Peteinatos et al.22 
further validated CNN effectiveness through comprehensive evaluation of VGG16, ResNet-50, and Xception 
architectures across twelve plant species, achieving >97% accuracy with ResNet-50 and Xception on 93,130 images. 
Li and Zhang23 advanced algorithmic efficiency through DC-YOLO, incorporating Dual Coordinate Attention 
and Content-Aware ReAssembly of Features to achieve 95.7% mAP@0.5 while maintaining computational 
efficiency with only 5.223 million parameters. Ishak Pacal24 introduced a modified MaxViT model with SE 
blocks and GRN-based MLP for maize leaf disease detection, achieving 99.24% accuracy and outperforming 
64+ deep learning models. Ismail and Ishak25 demonstrated Vision Transformers’ effectiveness for grape disease 
classification, with Swinv2-Base achieving 100% accuracy across multiple datasets. Ishak & Gültekin26 compared 
Vision Transformers to CNNs for corn leaf disease detection, with MaxViT models reaching 100% accuracy on 
the CD&S dataset and 99.83% on PlantVillage. Alongside these architectural innovations, significant progress 
has been made in dataset development. Genze et al.27 introduced the Moving Fields Weed Dataset (MFWD), 
encompassing 94,321 images of 28 weed species with semantic and instance segmentation masks. Olsen et 
al.28 addressed real-world variability through DeepWeeds, containing 17,509 images across eight species and 
locations, achieving 95.7% classification accuracy with ResNet-50. Dyrmann et al.29 explored weed classification 
across 22 species, achieving 86.2% accuracy with 10,413 diverse images. Sapkota et al.citesapkota2022use 
investigated synthetic data generation, demonstrating comparable performance between synthetic and real 
images in training Mask R-CNN models, though GAN-generated images showed limited effectiveness.

Multi-modal integration, platform adaptation, and computational optimization
Recent segmentation advances include enhancing machine learning crop classification through SAM-based 
field delineation31, with the Segment Anything Model demonstrating significant potential for smart farming 
applications32. Multi-modal approaches have emerged as crucial for complex detection scenarios. Xu et al.33 
developed a three-channel architecture processing RGB and depth information, achieving 89.3% detection 
precision. Lottes et al.34 incorporated sequential information in fully convolutional networks, attaining >94% 
crop recall and 91% weed recall using RGB+NIR imagery. Wang et al.9 advanced environmental adaptation 
through an encoder-decoder network achieving 88.91% mean intersection over union (MIoU) and 96.12% 
object-wise accuracy with NIR integration.

Platform integration has expanded application possibilities, with Islam et al.35 achieving 96% accuracy in 
UAV-based Random Forest classification. Beeharry and Bassoo36 demonstrated 99.8% accuracy with AlexNet 
CNN in distinguishing between soil, soybean (Glycine max L.), and weed types using 15,336 segmented images. 
Farooq et al.37 achieved 97% accuracy in pixel-wise vegetation detection using hyperspectral data, demonstrating 
CNN superiority over traditional histogram of oriented gradients methods. Jeon et al.38 addressed varying 
illumination through adaptive image processing, achieving 95.1% identification accuracy for crop plants. 
Computational efficiency remains crucial for practical deployment. Arun et al.39 developed a reduced U-Net 
architecture maintaining 95% accuracy while reducing parameters by 27%. Ukaegbu et al.40 demonstrated 
feasibility on UAV-mounted Raspberry Pi systems, though battery life and computational power constrained 
operations.

Weed detection and classification approaches
Recent research in weed detection and classification has demonstrated significant advancements in both 
methodology and practical application. Nenavath and Chaubey41 achieved notable success using Region-Based 
Convolutional Neural Networks for weed detection in sesame (Sesamum indicum L.) crops, attaining 96.84% 
detection accuracy and 97.79% classification accuracy across different weed species. This approach particularly 
emphasized the importance of species-specific identification for targeted control measures. Hasan et al.42 
addressed a crucial gap in weed detection datasets by developing an instance-level labeled dataset for corn fields, 
evaluating multiple deep learning models including YOLOv7 and YOLOv8. Their research demonstrated that 
YOLOv7 achieved the highest mAP of 88.50%, with data augmentation further improving results to 89.93%. 
Contrasting with the deep learning approach, Moldvai et al.43 explored traditional feature-based computer 
vision methods, achieving a 94.56% recall rate using significantly smaller datasets. Their work demonstrated 
that shape features, distance transformation features, color histograms, and texture features could provide 
comparable results to deep learning approaches while requiring only a fraction of the training data. This finding 
is particularly relevant for applications with limited data availability.

Almalky and Ahmed11 advanced the field by focusing on growth stage classification, utilizing drone-collected 
imagery and comparing various deep learning models. Their results showed that YOLOv5-small achieved real-
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time detection with 0.794 recall, while RetinaNet with ResNet-101-FPN backbone demonstrated high precision 
(87.457% average precision) in growth stage classification. Teimouri et al.12 developed a comprehensive 
approach for growth stage estimation across 18 weed species, achieving 70% accuracy in leaf counting and 96% 
accuracy within a two-leaf margin of error, demonstrating the feasibility of automated growth stage assessment. 
In specialized applications, Costello et al.44 focused on ragweed parthenium (Parthenium hysterophorus L.) 
weed detection, combining RGB and hyperspectral imagery with YOLOv4 CNN implementation. Their method 
achieved 95% detection accuracy and 86% classification accuracy for flowering stages, while hyperspectral 
analysis with XGBoost classifier reached 99% accuracy in growth stage classification. Subeesh et al.45 evaluated 
various deep learning architectures for weed identification in bell pepper (Capsicum annuum L fields, with 
InceptionV3 demonstrating superior performance (97.7% accuracy) at optimal hyperparameter settings, 
establishing a foundation for integration with automated herbicide application systems.

Tables 1 and 2 highlights advancements in weed detection using deep learning, focusing on architectural 
innovations, dataset diversity, and practical challenges. Despite advances in deep learning and computer vision 
applications for weed identification and classification, several major limitations persist in current research. A 
particularly significant shortcoming is that present studies tend to focus on a narrow range of weed species and 
growth stages, failing to reflect the complete spectrum of weed variety experienced in real-world farming contexts. 
This limitation is evident in recent studies11,12,22,44, which predominantly relied on single-species datasets. Key 
constraints in existing research include inadequate dataset size and variety9,10, imbalanced class distributions46, 
and excessive computing requirements47. These challenges were particularly apparent in12, where researchers 
encountered difficulties in managing overlapping leaves and class imbalance issues. Implementation challenges 
further complicate the practical application of these technologies. High hardware costs for sophisticated imaging 
equipment21 and substantial computational resource requirements34 create barriers to widespread adoption. 
Additionally, environmental variability significantly affects system performance in field conditions9. These 
collective limitations underscore the urgent need for more comprehensive datasets and the development of 
efficient, robust architectures for weed growth stage detection that can overcome these practical constraints.

The critical need for accurate weed growth stage detection and classification stems from several key factors. 
The effectiveness of herbicide applications is highly dependent on weed growth stages, with early intervention 
typically yielding better results and requiring lower chemical concentrations. Herbicide labels, which serve as the 
legal document governing application specifications, also state limits on weed growth stages or heights. Different 
growth stages present varying levels of competition with crops for resources, making timely identification 
crucial for optimal yield protection. Moreover, the morphological changes throughout weed development cycles 
affect detection accuracy, necessitating robust systems capable of adapting to these variations. Additionally, the 
economic implications of precise growth stage-based interventions are significant, potentially reducing herbicide 
usage by up to 90% compared to conventional blanket spraying methods. These factors collectively emphasize 
the urgent need for comprehensive solutions that can accurately detect and classify weed growth stages in real-
world agricultural settings.

References Contribution Dataset Model used Results Limitations

Hussain et 
al.21

Detecting common lambsquarters (Chenopodium 
album L.) in potato (Solanum tuberosum L.) fields; 
used CNN with PHA image encoding

30,160 images from 
Atlantic Canada potato 
field

GoogLeNet, VGG-16, 
EfficientNet

EfficientNet achieved 92-97% 
accuracy, outperforming 
other models

Requires sophisticated 
imaging equipment and 
high computational 
resources

Islam et al.35 UAV-based early weed detection in chilli pepper 
(Capsicum annuum L.) farms

UAV imagery from 
Australian chilli pepper 
fields

Random Forest, 
SVM, KNN

RF achieved highest accuracy 
at 96%; SVM 94%, KNN 63%

Limited by UAV flight 
conditions and image 
resolution

Xu et al.33 Multi-modal deep learning with RGB-D for weed 
detection in wheat (Triticum aestivum L.) crop

Wheat field images with 
RGB-D modality

Custom three-
channel network for 
RGB-D

89.3% precision (IoG)
Requires RGB-D cameras 
and high computational 
resources

Almalky 
and 
Ahmed11

Drone-based detection and classification of 
Consolida regalis L. weed growth stages using deep 
learning models

3731 images of Consolida 
regalis weed at four growth 
stages

YOLOv5, RetinaNet, 
Faster R-CNN

YOLOv5-small achieved 
recall of 0.794; RetinaNet 
achieved AP of 87.457%

Relied on a single species 
dataset

Teimouri et 
al.12

Estimating weed growth stages based on leaf 
counts using CNN

9649 RGB images of 18 
weed species across nine 
growth stages

Inception-v3 CNN 
architecture

Accuracy of 78% for 
Polygonum spp.; 70% overall 
accuracy

Challenges in 
overlapping leaves and 
inconsistent performance

Costello et 
al.44

Detection and growth stage classification of 
ragweed parthenium (Parthenium hysterophorus 
L.) using RGB and hyperspectral imagery

665 RGB images and 
hyperspectral data in 
controlled environments

YOLOv4 for RGB; 
XGBoost for 
hyperspectral

YOLOv4: 95% detection, 86% 
classification; XGBoost: 99% 
classification

Limited applicability to 
field conditions

Lottes et 
al.34

Fully convolutional network using sequential data 
for crop-weed classification

RGB+NIR images from 
sugar beet fields

Fully Convolutional 
Network

Over 94% recall for crops, 
91% for weeds

Needs consistent image 
sequences and high 
computational resources

Peteinatos et 
al.22 Identified 12 plant species using deep learning 93,130 labeled images 

under field conditions
VGG16, ResNet-50, 
Xception

ResNet-50, Xception achieved 
>97% accuracy; VGG16 82%

Controlled imaging 
conditions needed

Beeharry 
and 
Bassoo36

Evaluated ANN and AlexNet for UAV weed 
detection 15,336 segmented images ANN, AlexNet AlexNet achieved 99.8% 

accuracy; ANN 48.09%
Computational demands 
for UAV

Jeon et al.38 Adaptive algorithm for plant segmentation under 
variable lighting 666 field images ANN with image 

segmentation 95.1% accuracy for crops Limited scalability across 
environments

Table 1. Comparative overview of weed detection studies (Part 1): Analysis of contributions, datasets, models, 
results, and limitations in weed detection research.
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The extensive body of research reviewed above reveals several persistent limitations in current weed detection 
approaches. While transformer-based architectures like DINO and Swin have demonstrated impressive general 
object detection capabilities, they fail to address the unique challenges of agricultural environments—specifically 
the dramatic scale variations between seedling and mature weeds, complex morphological similarities between 
weed species, and the dense vegetation patterns typical in field conditions. Existing models either excel at 
processing speed (YOLO variants) or detection accuracy (DINO implementations) but rarely achieve both 
simultaneously. Additionally, as Tables 1, and 2 illustrate, most current architectures have been designed for 
general object detection rather than specifically optimized for the complex temporal dynamics of weed growth 
stages. WeedSwin directly addresses these limitations through its novel progressive attention heads that adapt 
to weed scale variations, specialized Channel Mapper for preserving morphological details critical for species 
differentiation, and optimized encoder-decoder architecture specifically designed to capture the complex 
contextual relationships in agricultural scenes. Unlike prior approaches that apply general-purpose detection 
frameworks to weed identification, WeedSwin’s architecture is fundamentally designed to balance the competing 
requirements of computational efficiency and detection accuracy across the entire weed growth cycle.

Our research addresses these challenges comprehensively by developing two extensive datasets, comprising 
203,567 images and 120,341 images, documenting 16 prevalent weed species in US agriculture. These datasets 
uniquely capture the entire growth cycle of these species across 11 weeks, providing a high-resolution temporal 
perspective on weed development. The seeds of weeds that have been used in this study were provided by the 
’weed control research’ lab at Southern Illinois University Carbondale. The datasets feature precise annotations of 
both species and growth stages, providing a valuable foundation for advancing weed classification and detection 
research. A key highlight of our study is the implementation of advanced detection architectures, including 
DINO13 Transformer with ResNet14 and Swin15 Transformer backbones, Detection Transformer (DETR)16, 
EfficientNet B417, YOLO v818, and RetinaNet19. Furthermore, we introduce a novel WeedSwin Transformer 
architecture, with all models undergoing comprehensive evaluation to enable robust performance comparisons 
across diverse scenarios. This study distinguishes itself through its creation of large-scale, diverse datasets 
that reflect real-world agricultural challenges, rigorous model evaluation, and practical recommendations for 
farmers. By providing evidence-based insights and implementable solutions for precision weed management, our 
holistic approach effectively bridges the gap between cutting-edge research and practical applications, advancing 
sustainable agriculture and fostering the adoption of precision technologies in modern farming operations.

Methods
Study area and experimental setup
This research was conducted during spring and summer 2024 at the SIU Horticulture Research Center greenhouse 
(37◦42′35.8″ N, 89◦15′45.0″ W). The facility provided optimal conditions for weed seedling cultivation. The 
greenhouse used 1000W High Pressure Sodium (HPS) grow light to keep the greenhouse warm (30–32 ◦C). 
We utilized 32 square pots (10.7 cm × 10.7 cm × 9 cm), with two replicate pots per species, containing Pro-
Mix® BX potting soil. Plants were watered as needed and fertilized with all-purpose 20-20-20 nutrient solution 
administered at three-day intervals.

References Contribution Dataset Model Used Results Limitations

Ukaegbu et 
al.40

UAV-based sprayer with CNN for real-time 
weed detection UAV images for weed classification CNN-based model 

on Raspberry Pi
High accuracy in real-time 
detection

Battery and 
computational 
limitations

Subeesh et 
al.45

Detecting weeds in polyhouse-grown bell 
peppers (Capsicum annuum L.) using CNN 1,106 images from a polyhouse

AlexNet, 
GoogLeNet, 
InceptionV3, 
Xception

InceptionV3 achieved 97.7% 
accuracy

Limited applicability 
to outdoor settings

Dyrmann et 
al.29

Classifying 22 plant species at early growth 
stages using CNN

10,413 images from multiple 
sources Custom CNN 86.2% accuracy High species similarity 

in early stages

Wang et al.9 Semantic segmentation for weed management 
with encoder-decoder network

Images of sugar beets (Beta 
vulgaris L. subsp. vulgaris var. 
altissima), oilseed rape (Brassica 
napus L. subsp. napus)

Encoder-decoder 
deep learning 
model

Highest MIoU of 88.91%, 
96.12% accuracy

Dependent on NIR 
imagery

Farooq et al.37 Effect of spectral bands on weed classification 
with CNNs Hyperspectral image dataset CNN, compared 

with HoG
CNN with hyperspectral data 
achieved 97% accuracy

High-cost imagery 
required

Arun et al.39 Pixel-wise segmentation of crops/weeds using 
reduced U-Net CWFID dataset Reduced U-Net 95% segmentation accuracy Challenges in 

overlapping regions

Olsen et al.28 Developed DeepWeeds dataset for weed 
detection in rangeland environments

17,509 images of 8 weed species 
from Australian rangelands

Inception-v3, 
ResNet-50

ResNet-50 achieved 95.7% 
accuracy with 53.4 ms/image

Inter-class variability 
challenges

Li and 
Zhang23

Proposed DC-YOLO for crop and weed 
detection using YOLOv7-tiny

Public datasets and field-collected 
corn seedling data DC-YOLO mAP@0.5 of 95.7%; 5.223M 

parameters
Limited exploration of 
diverse weed types

Sapkota et al.30 Explored synthetic images for training Mask 
R-CNN

Real UAV images, synthetic images 
(real plant- and GAN-generated) Mask R-CNN Real plant-based synthetic 

images: mAPm of 0.60
Synthetic images 
underperformed

Table 2. Table 1 continued: Comparative overview of weed detection studies (Part 2).
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Data collection
In this research, we monitored and labeled weed growth stages on a weekly basis to capture the temporal 
dynamics of plant development. Imaging began at week 1, which corresponded to BBCH48 (a widely recognized 
standard for phenological development in weeds) stage 11 (“first true leaf unfolded”), and continued weekly 
through week 11, ending at BBCH stage 60 (“first flower open”). Each plant image was annotated with both 
species and its corresponding week (e.g., AMATU_week_1, SORVU_week_5), providing a direct mapping 
between the week of observation and the phenological stage based on the BBCH scale. This week-wise labeling 
approach ensured consistent temporal resolution across all species and growth cycles. After initial automated 
labeling, each image was reviewed and corrected as needed using LabelImg software to improve annotation 
quality. While we referenced the BBCH scale for stage definitions, annotation consistency was primarily ensured 
through meticulous manual review and correction, rather than a formal multi-annotator protocol or expert 
consensus process. This methodology provides a transparent and systematic framework for growth stage 
annotation, facilitating robust temporal analysis and enabling direct comparison with standard phenological 
references.

To comprehensively document these growth stages, short 4K video clips (resolution: 3840 × 2160 pixels, 
aspect ratio: 16:9) were recorded across the 360◦ angle of the weeds during each imaging session. The videos 
were captured using an iPhone 15 Pro Max positioned at a height of 1.5 feet above the plants. Subsequently, 
individual frames were extracted from these clips to serve as the raw data. This method allowed for high-quality 
image acquisition, ensuring efficient and consistent data collection throughout the study period.

Among the sixteen weed species included in the study, it was observed that the species SORHA did not 
emerge during the first two weeks. To facilitate detailed analysis, two datasets were developed: the Alpha Weeds 
Dataset (AWD) and the Beta Weeds Dataset (BWD), encompassing a total of 174 classes. Initially, a total of 
2,494,476 frames were compiled across both datasets. After conducting a rigorous quality assessment to eliminate 
substandard images, 203,567 images were retained for AWD, while 120,341 images were selected for BWD. 
The rationale for creating these two datasets was to evaluate the model’s efficiency, accuracy, and performance 
on datasets of differing sizes. We have utilized AWD in our previous research52. The BWD was generated by 
selecting only the even-numbered images from AWD, resulting in a dataset approximately half the size of AWD. 
Additionally, in BWD, we corrected all the incorrect labels we found in AWD. The main purpose of creating 
BWD is to make a better dataset with all corrected labels and to check and compare model performances 
between a concise and a big dataset. Table 3 provides a comprehensive summary of the two datasets, detailing 
the weed species codes, scientific and common names, family, and the number of frames captured for each 
species on a weekly basis.

Figure 1 presents representative images of four weed species at distinct growth stages. For AMAPA, images 
from week one (a) and week eleven (b) are displayed. Similarly, SIDSP is depicted at week one (c) and week 
eleven (d). AMATU is shown during its first (e) and eleventh (f) weeks of growth. Lastly, SETPU is illustrated in 
its initial (g) and final (h) weeks of the study. It is noteworthy that while certain species produced flowers during 
their final growth stages, others did not, which reflects variations in natural growth processes and photoperiod 
sensitivities.

Data pre-processing and augmentation
The data preprocessing and augmentation phase forms the foundation of this research, ensuring the quality, 
consistency, and usability of the dataset for weed detection and classification. This stage involves a series of 
carefully designed steps to transform raw images into a structured, annotated dataset suitable for training 
advanced machine learning models.

We used two different preprocessing methods for our two datasets. In AWD, we used traditional computer 
vision techniques to preprocess the data. It begins with image normalization, a fundamental step that standardizes 
the input data. Each image is scaled to a range of 0-1 by dividing all pixel values by 255.0. Following normalization, 
a color space conversion is performed, transforming the images from the standard RGB (Red, Green, Blue) color 
space to the HSV (Hue, Saturation, Value) color space using matplotlib’s rgb_to_hsv function. This conversion is 
particularly significant for the application, as the HSV color space offers enhanced discrimination of green hues, 
which is crucial for accurate plant detection.

The next step in the pipeline is green area detection. Carefully calibrated thresholds for the HSV channels 
are used to create a mask that highlights potential plant regions. Specifically, hue values ranging from 25/360 to 
160/360, minimum saturation value of 0.20, and minimum value of 0.20 are applied. Morphological operations53 
are then applied to refine the green mask and improve the continuity of detected plant areas. Specifically, we 
implemented morphological closing using a disk-shaped structuring element with a radius of 3 pixels (via 
skimage.morphology.disk and skimage.morphology.binary_closing) to effectively close small gaps in the 
vegetation areas. The refined green areas are subsequently subjected to connected component analysis using 
skimage.measure.label, which identifies and labels distinct regions within the image. We utilized skimage.
measure.regionprops to extract properties of these labeled regions, particularly focusing on bounding box 
coordinates and area measurements. The largest connected component (determined by maximum area) was 
selected as the primary plant region, effectively filtering out smaller noise segments. This step is critical for 
differentiating individual plants or plant clusters, enabling more precise analysis and annotation. Our traditional 
computer vision pipeline successfully identified plants through color-based thresholding, generating distinctive 
orange masks for clear visualization (Fig. 2a–c).

In BWD, we employed Meta AI’s Segment Anything Model 2 (SAM-2)54,55 for preprocessing, a cutting-
edge successor to the original SAM foundation model released in 2024. Unlike its predecessor, SAM-2 extends 
capabilities to both images and videos through a unified architecture incorporating memory attention blocks, 
memory encoder, and memory bank components that enable temporal coherence while maintaining object 
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identity across frames. For our application, SAM-2 functions as a high-precision segmentation tool that 
first detects potential objects within an image, then generates a binary mask separating each object from the 
background, followed by precise bounding box generation around the detected objects. This model delivers 
approximately 6x greater segmentation accuracy compared to the original SAM56, processes approximately 44 
frames per second, and supports interactive refinement through various prompt types including points, boxes, 
and masks. We implemented SAM-2 specifically for the BWD dataset to ensure a superior labeling process with 
significantly higher accuracy than that achieved in the AWD dataset, as SAM-2’s robust zero-shot generalization 
capabilities proved particularly suitable for our diverse weed specimen preprocessing requirements57. Figure 2 
illustrates the process of the data augmentation. We demonstrated two distinct approaches for plant detection 
and segmentation across developmental stages there. SAM-2 produced highly precise binary masks capturing 

Computer Vision Techniques

Original Image (a) Masked Image (b) Bounding Box (c)

SAM-2 Techniques

Original Image (d) Masked Image (e) Masked with Bounding
Box (f)

Bounding Box (g)

Fig. 2. Comparison of plant detection approaches using traditional computer vision and SAM-2 techniques. 
Left panel: Computer vision-based detection showing (a) original seedling images, (b) color-based masking 
(orange overlay) for plant segmentation, and (c) resulting bounding box detection (green). Right panel: SAM-2 
segmentation pipeline demonstrating (d) original plant images at different growth stages, (e) binary mask 
generation with precise plant-soil separation, (f) mask refinement with bounding box constraints, and (g) final 
detection results overlaid on original images.

 

Fig. 1. Growth stage examples of four representative weed species used in this study. (a, b) AMAPA at week 
1 and week 11, respectively; (c, d) SIDSP at week 1 and week 11; (e, f) AMATU at week 1 and week 11; (g, h) 
SETPU at week 1 and week 11. These images illustrate the morphological changes across the 11-week lifecycle, 
highlighting the variation in plant structure, size, and complexity that the models must detect and classify 
accurately.
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intricate plant morphologies (Fig. 2d–g). While both methods effectively generated bounding boxes, SAM-2 
exhibited superior performance in delineating complex plant architectures, particularly for mature specimens 
with multiple leaves. This dual-method comparison validates the robustness of our plant detection system across 
growth stage.

Data labelling
The labeling process was designed to create comprehensive annotations that capture all relevant information 
about the detected plants. For each labeled green area, bounding box coordinates were extracted, defining the 
spatial extent of the plant within the image. These coordinates were determined by the minimum and maximum 
x and y values of the detected region. Detailed Pascal VOC XML annotations were generated for each processed 
image, including folder name, filename, dimensions, source database, and precise object bounding boxes 
with species names. The image processing pipeline was implemented using Python libraries such as Pillow, 
NumPy, scikit-image, and ElementTree, with the resulting XML files stored in a structured ’labels’ directory. The 
rigorous data preprocessing and labeling methodology yielded a dataset of high quality, characterized by precise 
annotations and consistent formatting.

To further enhance accuracy, a thorough quality control process was implemented. Each image was 
meticulously reviewed using LabelImg software following the initial automated labeling. The labeling convention 
incorporated both the species code and the week number, providing a comprehensive identifier for each plant’s 
growth stage and taxonomy. This detailed labeling strategy significantly enhanced the dataset’s utility for tracking 
plant development over time and for species-specific analysis. Figure 3 illustrates this process, presenting a side-
by-side comparison of an original image and its corresponding labeled version, referred to as the ground truth.

Following the annotation of the dataset, the data was divided into training, validation, and test sets. For the 
AWD, 184,719 images (80%) were used for training the object detection models, while 23,090 images (10%) 
were used for validation during training. The remaining 23,090 images (10%) were held out for testing the 
performance of the trained model. For the BWD, 96,272 images (80%) were used for training, with 12,034 
images (10%) allocated for validation during training. The remaining 12,035 images (10%) were held out for 
testing the model’s performance.

Models and algorithms
In this study, two experiments were conducted using the two different datasets. In the first experiment, involving 
the AWD, two advanced deep learning models were employed for weed detection and classification: RetinaNet19 
with a ResNeXt-10158 backbone and Detection Transformer (DETR)16 with a ResNet-5014 backbone. In the 
second experiment, using the BWD, several models were utilized, including RetinaNet19 with a ResNeXt-10158 
backbone, Detection Transformer (DETR)16 with a ResNet-5014 backbone, DINO13 Transformer with a Swin15 
Transformer backbone, DINO13 Transformer with a ResNet-10114 backbone, EfficientNet B417 with a ResNet-5014 
backbone, YOLO v818, and our custom architectural model named WeedSwin. These models were tasked with 
classifying weed species and identifying their respective growth stages (in weeks, while simultaneously localizing 
them within the images through bounding box predictions.

We trained all models, including baselines, for 12 epochs with batch size 16 on identical hardware configurations 
to ensure fair comparisons. The models were configured and trained using PyTorch and mmDetection. We used 
NVIDIA A100 GPU with 80GB memory and an Intel Xeon Gold 6338 CPU (2.00GHz) on a Linux system for 
training all our models. All models were initialized with weights pre-trained on COCO dataset, with validation 
performed after each epoch to monitor convergence. To ensure optimal performance and fairness, we performed 

Fig. 3. Sequential demonstration of the weed detection annotation workflow. (a) original image of the weed 
plant, (b) the selected area highlighted in blue (c) final labeled image showing with a bounding box around the 
plant with its species name (ABUTH) and growth stage (Week 2).
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light hyperparameter tuning for each model, focusing primarily on learning rate, weight decay, and confidence/
NMS thresholds. For all models, the initial learning rate was selected from 1e−3, 1e−4, 5e−5 based on early 
validation loss behavior, while weight decay was varied in 1e−4, 5e−5. The confidence thresholds for inference 
were fine-tuned per model in the range [0.05, 0.3] to balance false positives and detection robustness. Anchor 
configurations (e.g., aspect ratios, scales) and optimizer types (e.g., SGD vs AdamW) were also evaluated during 
early experiments for the baseline models. Final choices were determined using grid search on the validation set 
performance for each dataset.

RetinaNet with ResNeXt-101
In this study, we implemented the RetinaNet architecture19 with a ResNeXt-101 backbone59 for weed detection. 
RetinaNet, a single-stage object detector, addresses class imbalance through Focal Loss while maintaining high 
detection accuracy60. Our implementation utilizes a ResNeXt-101 (32×4d) backbone, which enhances the 
model’s feature extraction capabilities through its cardinality-based approach.

The ResNeXt-101 backbone employs a split-transform-merge strategy, where the input is divided into 32 
parallel paths (C = 32, cardinality), each with a bottleneck width of 4 channels (base_width = 4). This 
architecture can be formally expressed as:61

 
F(x) =

C∑
i=1

Ti(x) (1)

where C = 32 represents the cardinality, and Ti denotes the transformation function for the i-th path. Each 
transformation follows a bottleneck design with 1 × 1, 3 × 3, and 1 × 1 convolutions.

The Feature Pyramid Network (FPN) neck connects to this backbone, generating multi-scale feature maps 
{P2, P3, P4, P5, P6} with corresponding channels of 256. For a feature level l, the FPN output can be described 
as:

 Pl = C(U(Pl+1) + L(Cl)) (2)

where U represents upsampling, L is a 1 × 1 convolution lateral connection, and C is a 3 × 3 convolution for 
smoothing.

The RetinaHead subnet processes these features using Focal Loss, defined as61:

 F L(pt) = −αt(1 − pt)γ log(pt) (3)

where γ = 2.0 is the focusing parameter and αt = 0.25 is the balanced variant of the focal loss.
The model predicts across 174 weed classes using dense anchors at multiple scales (strides = [8, 16, 32, 64, 128]) 

and aspect ratios ([0.5, 1.0, 2.0]).
During training, we employed the AdamW optimizer with an initial learning rate of 1e-4 and weight decay 

of 1e-4. The learning rate follows a multi-step schedule using a gamma of 0.1. The model was initialized with 
weights pre-trained on the COCO dataset and trained for 12 epochs with validation performed after each epoch. 
To maintain stable training, we froze the first stage of the backbone (frozen_stages = 1) while allowing batch 
normalization statistics to be updated (requires_grad = True). The inference process employs a confidence 
threshold of 0.05 and Non-Maximum Suppression (NMS) with an IoU threshold of 0.5, limiting to a maximum 
of 100 detections per image. This configuration balances detection accuracy with computational efficiency while 
maintaining robust performance across various weeds.

Detection transformer with ResNet-50
The Detection Transformer (DETR)16 represents a paradigm shift in object detection by eliminating the need 
for hand-crafted components like non-maximum suppression and anchor generation62. Our implementation 
employs a ResNet-50 backbone63 coupled with a transformer encoder-decoder architecture for weed detection, 
processing a fixed set of N = 100 object queries in parallel.

The architecture begins with a ResNet-50 backbone that extracts hierarchical features through its four-stage 
design. The backbone output X ∈ RC×H×W ( where C = 2048) is processed through a channel mapper that 
reduces dimensionality to d = 256 channels. The matching cost between ground truth yi and prediction ŷσ(i) 
can be expressed as64:

 Lmatch(yi, ŷσ(i)) = −1{ci ̸=∅}p̂σ(i)(ci) + 1{ci ̸=∅}λL∥bi − b̂σ(i)∥1 (4)

where ci represents the target class label, bi is the ground truth box, and σ is the optimal assignment. The transformer 
encoder-decoder architecture processes the features through self-attention mechanisms. For a given query Q, key K, 
and value V, the multi-head attention is computed as MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O , 
where each attention head is calculated as headi = Attention(QW Q

i , KW K
i , V W V

i ) with W Q
i , W K

i , W V
i , 

and W O  being learnable parameter matrices that project the inputs into different representation subspaces. The 
final loss function combines classification and box regression terms64:

 
L = λcls

N∑
i=1

[− log p̂σ̂(i)(ci)] + λbox

N∑
i=1

1{ci ̸=∅}Lbox(bi, b̂σ̂(i)) (5)
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where Lbox combines the L1 loss and the generalized IoU loss:

 Lbox(bi, b̂i) = λL1∥bi − b̂i∥1 + λgiouLgiou(bi, b̂i) (6)

For training, we utilize a bipartite matching loss that optimally assigns predictions to ground-truth objects using 
the Hungarian algorithm. The total loss is a combination of classification and box regression terms:

 L = λclsLcls + λboxLbox + λgiouLgiou (7)

where λcls = 1, λbox = 5, and λgiou = 2 are loss weights. The classification loss Lcls uses cross-entropy with 
balanced weighting (background weight = 0.1), while box regression employs L1 and GIoU losses. Training 
proceeds with the AdamW optimizer (learning rate = 10−4, weight decay = 10−4) for 12 epochs. We implement 
a multi-step learning rate schedule with a milestone at epoch 334 and a decay factor of 0.1. During inference, 
the model directly outputs a set of 100 predictions with confidence scores, requiring no post-processing beyond 
score thresholding. This end-to-end approach demonstrates particular efficacy in handling the complex spatial 
relationships and varying scales characteristic of weed detection, while maintaining computational efficiency 
through parallel prediction generation.

The algorithm of DETR16 presents the model training process where the goal is to optimize the model 
parameters, denoted by θ. Initially, the model parameters are set to their initial values. The training process 
runs for 12 number of epochs, iterating over mini-batches of the training dataset in each epoch. For each mini-
batch, the model makes predictions ŷ, and the classification and regression losses are computed. These losses 
are summed to obtain the total loss, which is then used to calculate the gradients through backpropagation. The 
model parameters are updated using the AdamW optimizer. At regular intervals, defined by val_interval, 
the model’s performance is evaluated on the validation dataset, and the model checkpoint is saved if there is an 
improvement in performance.

DINO transformer with Swin and ResNet-101
In this work, we employ DINO13, an extension of the DETR16 architecture, which enhances object detection 
performance by incorporating advanced query selection and a denoising training strategy. For our weed 
detection task, we utilize DINO13 with two different backbone architectures: the Swin15 Transformer and 
ResNet-10114. Each of these backbones brings unique advantages to the challenge of processing high-resolution 
weed imagery. The Swin Transformer15, with its shifted window mechanism and hierarchical feature extraction, 
excels at capturing both detailed and contextual weed information. On the other hand, ResNet-10114’s deep 
residual learning framework is particularly effective at identifying intricate weed patterns, providing strong 
feature extraction capabilities.

The DINO13 architecture processes weed images through multiple stages. The initial stage involves extracting 
multi-scale features using either the Swin Transformer15 or ResNet-10114 backbone. The Swin Transformer15, 
with its innovative design of shifted windows, is particularly well-suited for capturing both fine-grained weed 
characteristics and broader contextual information, which is critical for distinguishing weeds in complex 
agricultural environments. Alternatively, ResNet-10114 provides a powerful residual learning mechanism, 
allowing it to learn and extract intricate features of the weed species effectively, particularly when dealing with 
the visual complexity of weed patterns. Once the multi-scale features are extracted, they are enhanced with 
positional embeddings, which help the model maintain spatial awareness of the objects in the image. This 
spatial awareness is crucial for accurately localizing weeds, particularly in complex agricultural scenes where 
overlapping vegetation is common. The enhanced features are then passed through several encoder layers, which 
are responsible for further refining the feature representation. A unique aspect of DINO13 is its sophisticated 
query selection mechanism, which dynamically adapts to the complexity of the scene. This query selection allows 
the architecture to efficiently process images containing varying weed densities and distributions, adapting its 
attention to areas of interest.

The decoder portion of the DINO13 architecture includes a denoising training strategy, employing both 
content queries and base anchors. This denoising mechanism is highly beneficial for weed detection, as it 
enhances the model’s ability to distinguish between similar-looking weed species and effectively handles cases 
of overlapping vegetation. During training, the model uses a contrastive denoising approach in the matching 
module. This approach involves selecting positive and negative samples, which helps the model refine its 
discriminative capabilities, improving its ability to distinguish different weed classes and reducing false positives. 
Finally, the model uses a Classification and Detection Network (CDN) to produce the refined predictions for 
weed instances. This CDN is specifically tuned for our 174-class weed detection task, incorporating class-specific 
features learned during the training process. The result is a robust model that can provide highly accurate and 
interpretable detection results, which are essential for agricultural applications where reliability and precision 
are of utmost importance.

The overall architecture starts with input weed images, which are processed to extract multi-scale features. 
These features are fed into an encoder consisting of multiple layers, enhanced by positional embeddings. 
The encoder output is then refined through a query selection mechanism, leading to the decoder layers. The 
decoder is responsible for further processing using both content queries and base anchors, facilitating accurate 
localization and classification of weeds. The matching module, equipped with contrastive denoising training, 
distinguishes between positive and negative instances, enhancing the model’s ability to identify subtle inter-
species differences. The output layer provides the final classification and detection results for each weed instance.

Scientific Reports |        (2025) 15:23274 11| https://doi.org/10.1038/s41598-025-05092-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


WeedSwin - proposed model
While existing architectures like Swin Transformer15 and DINO13 demonstrate strong performance in general 
object detection, they face significant limitations in agricultural weed detection. Standard Swin Transformer’s 
fixed window partitioning struggles with the highly variable scale characteristics of weeds across growth stages, 
while DINO’s query selection mechanism fails to capture the subtle morphological differences between similar 
plant species. To address these domain-specific challenges, we propose WeedSwin, an enhanced Swin-based 
architecture optimized for weed detection and classification tasks.WeedSwin introduces four key architectural 
components specifically designed for agricultural applications: (1) Enhanced Backbone with Progressive 
Attention Heads (6→12→24→48) that dynamically adapt to the dramatic scale variations between seedling 
and mature weeds, providing multi-scale feature representation critical for detecting plants at different growth 
stages. (2) Specialized Feature Enhancement Neck utilizing a Channel Mapper with ReLU activation that 
preserves fine-grained morphological details essential for differentiating between visually similar weed species. 
(3) Modified Encoder with 8 layers (versus 6 in standard implementations) and 16 attention heads, enabling 
more comprehensive feature extraction from complex agricultural scenes. (4) Enhanced Decoder with 8 layers 
and optimized cross-attention mechanisms that better capture contextual relationships in densely vegetated 
environments. These modifications collectively improve the model’s capacity to detect and classify weeds 
effectively in diverse agricultural environments.

We employed the backbone with optimized parameters, defined as 
Eb = SwinT(dmodel = 192, dheads = [6, 12, 24, 48], wsize = 12), where dmodel represents the initial 
embedding dimension and dheads represents the progressive scaling of attention heads across layers. For 
feature enhancement, we introduced a Channel Mapper with enhanced feature processing, expressed as 
Fout = σ(BN(W · Fin + b)), where Fout is the output feature map, Fin is the input feature map, W represents 
learnable weights, BN denotes Batch Normalization, and σ is the ReLU activation function.

Our architecture deepens both the encoder and decoder to 8 layers (L = 8) with enhanced multi-head 
attention, implementing 16 attention heads with embedding dimension d = 384, resulting in dhead = 24 per 
attention head. The multi-head attention mechanism is defined as:

 MHA(Q, K, V ) = Concat (head1, ..., head16) W O  (8)

where each head is computed as: headi = Attention(QW Q
i , KW K

i , V W V
i ). The enhanced decoder 

implements an 8-layer structure with improved cross-attention mechanism, defined as:

 
CrossAttn(q, k, v) = SoftMax(q · kT

√
dk

)v (9)

where q represents queries, k represents keys, and v represents values, with dk = 384. We increased transformer 
layers to 8, enhanced the embedding dimension to 384, and optimized attention heads to 16 for better feature 
representation. The enhanced feature extraction is achieved through our modified Channel Mapper:

 Fenhanced =ChannelMapper(Finput) = ReLU(BN(Conv1x1(Finput)))  (10)

 dmodel =nheads × dhead (384 = 16 × 24)  (11)

We carefully balanced the model’s capacity through the relationship dmodel, ensuring efficient attention 
computation while maintaining representational power. The architecture demonstrates particular 
effectiveness for weed detection through its multi-scale feature processing capability, with progressive 
attention heads (6→12→24→48) enabling effective processing of weeds at various scales. The increased 
embedding dimension provides richer feature representation, with a capacity gain of approximately 1.75× 
(Capacitygain = (384/256) × (8/6)). The deeper architecture facilitates better information propagation 
with a receptive field of Receptivefield = basesize × 2(L−1), where L = 8 provides broader context capture 
compared to the original L = 6.

Figure 4 shows the proposed WeedSwin architecture, a novel transformer-based framework for weed detection 
and classification. The architecture consists of three main components: an encoder, a decoder, and a Feature 
Pyramid Network (FPN) for detection. The encoder pathway employs a hierarchical Swin Transformer structure 
with four progressive stages, where the attention heads increase from 6 to 48. Each stage operates at different 
spatial resolutions (from H/4×W/4 to H/32×W/32) with a consistent embedding dimension of 384 and window 
size of 12. The stages contain varying numbers of Transformer blocks (×2, ×2, ×6, ×2 respectively). A Channel 
Mapper module with fully connected layers and ReLU activation bridges the encoder and decoder, enhancing 
feature transformation. The decoder comprises eight blocks (D1-D3 shown) with cross-attention mechanisms 
and skip connections from corresponding encoder stages, progressively recovering spatial details. The detection 
head utilizes a Feature Pyramid Network structure with dual branches: a Classification Branch predicting weed 
class and growth stages, and a Bounding Box Regression Branch estimating object coordinates. These branches 
process the feature map through parallel pathways, combining their outputs via multiplication and FC layers to 
generate the final feature vector.

While our model introduces additional parameters, we maintained efficiency through optimized attention 
head distribution, balanced embedding dimensions, and efficient feature enhancement in the neck. The 
theoretical computational complexity remains O(N × dmodel + N2 × dhead), where N is the sequence 
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length, making it practical for real-world agricultural applications. This enhanced architecture demonstrates 
our commitment to improving weed detection accuracy while maintaining computational efficiency, making it 
suitable for practical agricultural applications.
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Fig. 4. WeedSwin: A hierarchical vision transformer architecture incorporating progressive attention heads 
(6-48), feature enhancement through Channel Mapper, eight decoder blocks with cross-attention mechanisms, 
and Feature Pyramid Network for precise weed detection and localization.
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Algorithm 1. WeedSwin: Model Training Process

Algorithm 1 presents our WeedSwin training process, an enhanced Swin architecture optimized for weed 
detection. Our key modifications include an enhanced encoder and decoder, each featuring 8 layers and 16 
attention heads with 0.2 dropout for better feature transformation. During training, it processes images through 
progressive feature extraction ([6, 12, 24, 48] heads), enhanced feature mapping, and our modified attention 
mechanisms. The model optimizes a combined loss function incorporating classification, bounding box, and 
GIoU losses. The training process includes regular validation checks, model checkpointing, and learning rate 
scheduling, concluding with Non-Maximum Suppression for final predictions.

Evaluation metrics
To evaluate our weed detection model’s performance comprehensively, we employ multiple metrics: Average 
Precision (AP), Average Recall (AR), Mean Average Precision (mAP), and Frames Per Second (FPS). These 
metrics collectively assess both accuracy and computational efficiency.

The fundamental components of our evaluation are Precision (P) and Recall (R), defined as: P = T P
T P +F P , 

and R = T P
T P +F N . Where a TP (true positive) is a detected bounding box that correctly identifies a weed species 

and has an IoU above a specified threshold (e.g., 0.50) with the ground truth bounding box. A FP (false positive) 
is a detection that either does not sufficiently overlap with any ground truth box or incorrectly identifies the 
weed species. A FN (false negative) occurs when a ground truth weed instance is not detected by the model.

Average Precision (AP) provides a comprehensive view of detection performance by integrating precision 
over recall. It effectively summarizes the precision-recall curve65 into a single value, capturing the model’s ability 
to make accurate detections across different confidence thresholds. The AP is calculated as:

 
AP =

∫ 1

0
P (R) dR (12)

where P(R) represents the precision value at each recall level. This integration over the entire recall range [0,1] 
ensures that both high precision and high recall are rewarded, providing a balanced measure of detection quality.

Average Recall (AR) quantifies the model’s detection coverage across various IoU thresholds. This metric is 
particularly important for assessing the model’s ability to detect weeds under different overlap criteria, making 
it valuable for understanding detection robustness. AR is computed as:

 
AR = 1

N

N∑
i=1

Rmax(IoUi) (13)

where N is the number of IoU thresholds considered, and Rmax(IoUi) represents the maximum recall achieved 
at each IoU threshold. This averaging across multiple IoU thresholds provides insight into the model’s detection 
stability under varying overlap requirements.

Mean Average Precision (mAP) evaluates the model’s performance across all weed classes, providing a 
comprehensive metric for multi-class detection scenarios. This metric is particularly crucial in weed detection 
as it accounts for the varying difficulties in detecting different weed species and growth stages. The mAP is 
calculated as66:

 
mAP = 1

C

C∑
c=1

APc (14)

where C represents the total number of weed classes, and APc is the Average Precision for each class. This 
averaging across classes ensures that the model’s performance is evaluated fairly across all weed types, regardless 
of their representation in the dataset. We also measure computational efficiency using Frames Per Second (FPS):

 
F P S = Nframes

Tprocessing
 (15)

where Nframes is the number of processed frames and Tprocessing is the total processing time in seconds. FPS is 
crucial for assessing real-time detection capabilities, particularly important for practical field applications where 
rapid weed identification is essential. These metrics are evaluated across various IoU thresholds (0.5:0.95) to 
provide a comprehensive assessment of our model’s detection accuracy, classification precision, and operational 
efficiency in real-world scenarios.

Experimental result
In this research, we implemented several state-of-the-art algorithms, including DINO13 with ResNet14 and 
Swin15 backbones, DETR16, EfficientNet B417, RetinaNet19, and Weedswin (our custom architecture). Among 
these, DETR16 and RetinaNet19 were applied exclusively to our AWD dataset, while all the algorithms were 
evaluated on the BWD dataset. The evaluation encompasses both training and test datasets, with a detailed 
analysis across 16 weed species. We employed all the evaluation metrics at different IoU thresholds and detection 
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limits, as well as mAP and mAR. Furthermore, we compared the inference speed (FPS) of the models to provide 
a comprehensive view of their performance and capabilities.

Object detection result on AWD dataset
Table 4 presents a comparative analysis of DETR16 and RetinaNet19 models evaluated on the AWD dataset52. 
The performance metrics include mAP and mAR for both training and test sets, along with inference speed 
measured in FPS. RetinaNet19 demonstrates superior performance across all evaluation metrics. In terms 
of accuracy, RetinaNet achieves higher mAP scores of 0.907 and 0.904 on training and test sets respectively, 
compared to DETR’s 0.854 and 0.840. This pattern continues in the recall metrics, where RetinaNet approaches 
near-perfect scores with mAR values of 0.997 for training and 0.989 for testing, while DETR achieves 0.941 and 
0.936 respectively. Most notably, RetinaNet exhibits substantially faster inference speed at 347.22 FPS, which is 
more than five times faster than DETR’s 65.43 FPS.

Table 5 presents a detailed species-wise performance analysis, showing averaged results across 11 weeks for 
16 weed species52. RetinaNet19 exhibits more consistent performance across species, with notable achievements 
for AMATU (mAP 0.832) and AMAPA (mAP 0.877), though showing reduced effectiveness with ECHCG 
(mAP 0.566). DETR16 displays varying performance levels, performing strongly with AMBEL (mAP 0.817) and 
SIDSP (mAP 0.771), but struggling with CHEAL (mAP 0.503) and SORHA (mAP 0.527). RetinaNet maintains 
higher recall scores across species, while both models show expected performance decreases as IoU thresholds 
increase from 0.5 to 0.75.

Figure 5 demonstrates the detection performance of DETR16 and RetinaNet19 models across three distinct 
weed species in the AWD dataset52. The figure presents a comparative analysis through original images, ground 
truth annotations, and model predictions. In the first row, both models successfully detected CHEAL at week 7, 
albeit with low confidence scores and imperfect bounding box generation. These imperfections can be attributed 
to the AWD dataset’s labeling inconsistencies, which prompted the creation of our more accurately labeled 
BWD dataset. The second row showcases AMBEL at week 7, where both models exhibited strong detection 
performance. RetinaNet19 achieved a marginally superior confidence score of 99.3% compared to DETR’s 89.6%. 
Similarly, the third row featuring DIGSA at week 5 demonstrates excellent detection capabilities from both 
models, with confidence scores exceeding 90%. Throughout all three species, RetinaNet consistently produced 
slightly higher confidence scores, particularly excelling in DIGSA detection with a 99.9% confidence score.

Object detection result on BWD dataset
Table 6 presents a comprehensive performance comparison of various state-of-the-art object detection models 
evaluated on the BWD dataset. The comparison encompasses seven different model configurations, each 
characterized by their specific backbone architectures, and evaluated using mAP, mAR on both training and test 
sets, along with their inference speed (FPS), computational complexity (FLOPs), and model size (Parameters).

The results demonstrate that while DINO13 with Swin15 backbone achieves marginally higher mAP scores 
(0.993 training, 0.994 test), our proposed WeedSwin architecture exhibits comparable accuracy (0.992 training, 
0.993 test) and superior recall performance (0.985 training and test mAR) while offering significant advantages 
in processing speed. To assess the statistical robustness of WeedSwin, we conducted three independent runs 
with identical configurations, yielding a mean mAP of 0.993 with a standard deviation of 0.0015. Statistical 
analysis revealed a 95% confidence interval of 0.993 ± 0.004 (0.989-0.997), demonstrating the model’s 
consistency across multiple initializations. This narrow confidence interval confirms that WeedSwin’s superior 
performance is statistically significant and not attributable to chance or favorable initialization conditions. The 
minimal variability between runs further validates the architecture’s stability in maintaining high detection 
accuracy across diverse weed species and growth stages. WeedSwin achieves an impressive 218.27 FPS, which 
is approximately 43% faster than DINO-Swin’s 152.62 FPS. Additionally, WeedSwin requires less computational 
resources (0.114T FLOPs) compared to DINO-Swin (0.241T FLOPs) and has a substantially smaller parameter 
count (40.476M vs 0.209G).

When examining the broader landscape of models, RetinaNet19 with ResNext58 101 backbone and EfficientNet 
B417 with ResNet14 50 backbone achieve higher FPS (504.36 and 490.65 respectively) but demonstrate lower 
accuracy (0.982 and 0.989 test mAP respectively) and recall rates (0.947 and 0.967 test mAR respectively). 
YOLO v818 with CSPNet67 backbone demonstrates impressive performance with 0.990 test mAP and 0.971 test 
mAR, while achieving a remarkable 422.48 FPS with efficient computational requirements (100.15G FLOPs and 
36.12M parameters). DETR16 with ResNet14 50 backbone shows competitive accuracy (0.984 test mAP) and 
high recall (0.985 test mAR) but operates at a significantly lower speed of 80.65 FPS. DINO13 with ResNet14 101 
backbone presents balanced performance (0.992 test mAP, 0.979 test mAR, 120.67 FPS) but still falls short of 
WeedSwin’s efficiency and recall capability.

Model

mAP mAR

FPSTrain Test Train Test

DETR16 0.854 0.840 0.941 0.936 65.43

RetinaNet19 0.907 0.904 0.997 0.989 347.22

Table 4. Performance Comparison of DETR16 and RetinaNet19 on AWD Training and Test Datasets52. 
Significant values are in bold.
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The performance of WeedSwin is particularly noteworthy as it achieves a near-optimal balance between 
accuracy, recall, and computational efficiency. The marginal difference in mAP (0.001 lower than DINO-Swin) 
is negligible in practical applications, while its superior mAR performance, substantially reduced computational 
requirements, and significant gain in processing speed represents significant advantages for real-time weed 
detection systems.

Table 7 presents a comprehensive evaluation of seven cutting-edge object detection architectures tested on 
the BWD dataset. Each model’s performance is meticulously evaluated across 16 distinct weed species using 
four critical metrics: mAP, mAP at 50% IoU threshold (mAP_50), mAP at 75% IoU threshold (mAP_75), 
and Average Recall (AvgRec). The proposed WeedSwin model demonstrates remarkable superiority across 
the board, consistently achieving exceptional scores across all metrics. For most species, it achieves perfect 
or near-perfect scores (1.000) for mAP_50, and notably high mAP_75 values, indicating superior detection 
capability even at stricter intersection-over-union thresholds. This performance is particularly impressive for 
challenging species like AMBEL where WeedSwin achieves 0.994 mAP, 1.000 mAP_50, 1.000 mAP_75, and 
1.000 AvgRec, surpassing all other models. When examining individual model performances, RetinaNet19 with 
ResNeXt-10158 backbone shows strong baseline performance with mAP values consistently above 0.900 for 
most species. Its performance is particularly notable for SIDSP with 0.969 mAP. EfficientNet-B417 demonstrates 
slightly better performance than RetinaNet in several cases, especially for species like AMBEL (0.981 mAP) 
and SIDSP (0.989 mAP), suggesting that its architecture might be better suited for certain weed morphologies. 
DETR16, while showing more modest performance among the seven models, still maintains respectable scores. 
Its performance is particularly challenged with species like AMATU where it achieves 0.899 mAP, significantly 
lower than WeedSwin’s 0.975. However, DETR maintains strong Average Recall scores above 0.989 for most 
species, indicating good detection capability despite lower precision.

DINO13 with ResNet-5014 backbone shows consistent improvement over DETR across all metrics, positioning 
itself as a strong competitor to RetinaNet19 and EfficientNet-B417. Its performance is particularly impressive 
for species like SIDSP and AMBEL, where it achieves mAP scores of 0.990, demonstrating the effectiveness of 
its architecture. Interestingly, DINO with Swin15 backbone shows substantially lower performance compared 
to its ResNet-50 counterpart, with mAP values averaging around 0.7-0.8 across most species. This significant 
difference suggests that the combination of DINO architecture with Swin transformer may not be optimally 
configured for this specific weed detection task. YOLO v818 with CSPNet67 backbone demonstrates impressive 
performance, achieving mAP scores comparable to DINO with ResNet-50 and often exceeding EfficientNet-B4 
results. For species like SIDSP, it reaches 0.991 mAP, showcasing its effectiveness as a real-time detection model 
that doesn’t compromise on accuracy. Its consistent performance across all species, with most mAP scores above 
0.950, highlights the robustness of its architecture for weed detection tasks.

The most challenging species across all models appear to be SORHA and SORVU, where even the best-
performing WeedSwin model achieves relatively lower scores (0.932 and 0.959 mAP respectively). This consistent 
pattern suggests inherent difficulties in detecting these particular species. These two species are in the same 
genus and are closely related, and, therefore, have similar morphological characteristics and growth patterns. 
The performance gap is particularly pronounced for DINO with Swin backbone, which achieves only 0.710 and 
0.722 mAP for these species respectively, with a notably low AvgRec of 0.894 for SORVU. In terms of Average 
Recall, most models perform exceptionally well (above 0.990 for many species), indicating strong detection 
capabilities. However, the proposed WeedSwin model distinguishes itself through superior precision across 
different IoU thresholds, as evidenced by its consistently higher mAP_75 scores. This suggests better localization 
accuracy and more precise bounding box predictions, making it particularly suitable for practical agricultural 

Species code

DETR16 RetinaNet19

Average mAP Average mAP_50 Average mAP_75 Average Recall Average mAP Average mAP_50 Average mAP_75 Average Recall

ABUTH 0.683 0.907 0.719 0.973 0.720 0.924 0.779 0.993

AMAPA 0.617 0.835 0.672 0.975 0.877 0.985 0.939 0.994

AMARE 0.575 0.807 0.598 0.957 0.617 0.941 0.684 0.987

AMATU 0.536 0.721 0.565 0.869 0.832 0.977 0.905 0.997

AMBEL 0.817 0.978 0.898 0.993 0.663 0.926 0.740 0.994

CHEAL 0.503 0.846 0.502 0.962 0.871 0.993 0.957 0.997

CYPES 0.643 0.861 0.680 0.986 0.781 0.971 0.853 0.995

DIGSA 0.578 0.864 0.594 0.995 0.664 0.878 0.753 0.976

ECHCG 0.655 0.899 0.715 0.986 0.566 0.814 0.612 0.950

ERICA 0.718 0.918 0.752 0.977 0.678 0.918 0.749 0.992

PANDI 0.670 0.929 0.723 0.979 0.724 0.934 0.799 0.993

SETFA 0.680 0.903 0.756 0.990 0.785 0.967 0.854 0.993

SETPU 0.597 0.852 0.652 0.973 0.794 0.949 0.858 0.993

SIDSP 0.771 0.980 0.826 0.993 0.739 0.954 0.832 0.991

SORVU 0.582 0.791 0.624 0.871 0.713 0.925 0.789 0.995

SORHA 0.527 0.715 0.544 0.892 0.693 0.858 0.780 0.894

Table 5. Performance Comparison of DETR16 and RetinaNet19 on AWD Training and Test Datasets52.
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applications where precise weed localization is crucial for targeted treatment. YOLO v8 also demonstrates strong 
recall capabilities while maintaining competitive precision, indicating its potential as a balanced solution for 
real-world deployment scenarios.

Table 8 presents the performance analysis of six economically significant weed species that are particularly 
problematic in US agriculture: AMAPA (palmer amaranth), AMBEL (common ragweed), DIGSA (large 
crabgrass), SETFA (giant foxtail), CHEAL (common lambsquarters), and AMATU (waterhemp). These species, 

Model Backbone

mAP↑ mAR↑
FPS↑ FLOPs↓ Params↓Train Test Train Test

RetinaNet19 ResNext 10158 0.978 0.982 0.945 0.947 504.36 150.117G 58.539M

DETR16 ResNet 5014 0.984 0.984 0.929 0.985 80.65 80.019G 41.557M

DINO13 Swin15 0.993 0.994 0.981 0.986 152.62 0.241T 0.209G

DINO13 ResNet 10114 0.991 0.992 0.977 0.979 120.67 0.129T 60.987M

WeedSwin* Swin15 0.992 0.993 0.985 0.985 218.27 0.114T 40.476M

EfficientNet B417 ResNet 5014 0.987 0.989 0.948 0.967 490.65 90.0G 24.317M

YOLO v818 CSPNet67 0.989 0.990 0.968 0.971 422.48 100.15G 36.12M

Table 6. Performance Comparison of Different Models and Their Backbones on BWD dataset. *WeedSwin 
is our proposed architecture with modified Swin15 Transformer-based encoder and decoder with additional 
layers.

 

Fig. 5. Comparison of object detection results for CHEAL, AMBEL, and DIGSA using DETR16 and 
RetinaNet19 models for AWD dataset. Row 1 displays predictions for CHEAL, Row 2 displays predictions for 
AMBEL, and Row 3 displays predictions for DIGSA, with ground truth and model confidence scores indicated 
for each detection.
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selected from our dataset of 16 weed types, are commonly referred to as “driver weeds” due to their critical role 
in shaping agricultural management decisions across the United States. Their selection for detailed analysis 
was based on three key factors: their extensive geographic distribution throughout US farming regions, or 
their documented resistance to multiple herbicides, and their substantial negative impact on crop yields. These 
characteristics make them particularly challenging for farmers and agricultural managers, necessitating precise 
detection and management strategies.

Analysis of detection performance across growth stages (Week 1–11) reveals distinct patterns among the 
different architectures. RetinaNet exhibits exceptional accuracy, achieving perfect detection (mAP = 1.000) in 
mature growth stages (Weeks 6-11) for most species. However, it shows varying performance in early-stage 
detection, particularly for SETFA and CHEAL (mAP = 0.854 and 0.829 respectively in Weeks 1-2). Notably, 
for AMATU, RetinaNet maintains consistently high performance (mAP > 0.95) even in early stages, suggesting 
better detection capability for this species. Our proposed WeedSwin architecture demonstrates superior 
consistency throughout all growth stages and species. It maintains mAP values consistently above 0.95 from 
Week 6 onwards and, notably, shows stable performance even during early growth stages (Weeks 1-3) where 
other models typically struggle. This stability is particularly evident in challenging species like DIGSA, SETFA, 
and AMATU, where competing models show considerable performance variations.

YOLO v8 architecture demonstrates impressive and consistent performance across all species and growth 
stages. For AMAPA and AMBEL, it achieves mAP values comparable to WeedSwin (ranging from 0.947 to 
0.998), with particularly strong performance in later growth stages. For DIGSA and SETFA, YOLO v8 maintains 

Species

RetinaNet19 EfficientNet-B417 DETR16 DINO13

(ResNeXt-10158) (ResNet-5014) (ResNet-5014) (ResNet-5014)

mAP mAP50 mAP75 AvgRec mAP mAP50 mAP75 AvgRec mAP mAP50 mAP75 AvgRec mAP mAP50 mAP75 AvgRec

ABUTH 0.959 0.995 0.982 1.000 0.971 0.994 0.987 1.000 0.944 0.992 0.976 0.998 0.973 0.997 0.990 1.000

AMAPA 0.947 0.994 0.981 1.000 0.972 0.998 0.989 1.000 0.947 0.990 0.969 0.997 0.977 0.997 0.991 0.999

AMARE 0.941 0.980 0.969 1.000 0.954 0.975 0.967 0.997 0.916 0.978 0.947 0.997 0.957 0.989 0.977 0.999

AMATU 0.931 0.987 0.965 1.000 0.949 0.998 0.973 1.000 0.899 0.994 0.951 0.996 0.967 0.996 0.986 0.999

AMBEL 0.964 0.998 0.987 1.000 0.981 0.998 0.995 1.000 0.918 0.997 0.959 0.998 0.990 0.999 0.998 1.000

CHEAL 0.932 0.989 0.967 1.000 0.947 0.991 0.977 0.999 0.912 0.989 0.956 0.997 0.957 0.990 0.980 0.998

CYPES 0.947 0.992 0.978 1.000 0.968 0.997 0.987 1.000 0.923 0.993 0.965 0.998 0.982 0.998 0.994 1.000

DIGSA 0.937 0.991 0.972 1.000 0.959 0.995 0.983 0.999 0.915 0.991 0.961 0.997 0.978 0.997 0.991 1.000

ECHCG 0.944 0.993 0.977 1.000 0.965 0.996 0.985 1.000 0.921 0.992 0.963 0.998 0.981 0.997 0.992 1.000

ERICA 0.911 0.996 0.978 1.000 0.943 0.996 0.973 0.999 0.909 0.996 0.970 1.000 0.945 0.996 0.982 0.996

PANDI 0.902 0.980 0.963 1.000 0.953 1.000 0.989 1.000 0.910 0.996 0.964 1.000 0.964 1.000 0.987 1.000

SETFA 0.906 0.973 0.960 1.000 0.945 0.987 0.987 1.000 0.906 0.989 0.969 0.998 0.971 1.000 0.996 1.000

SETPU 0.917 0.955 0.954 1.000 0.960 0.996 0.994 1.000 0.903 0.995 0.969 1.000 0.969 1.000 0.995 1.000

SIDSP 0.969 0.999 0.994 1.000 0.989 1.000 1.000 1.000 0.952 0.998 0.989 0.999 0.990 1.000 1.000 1.000

SORHA 0.820 0.973 0.871 0.998 0.872 0.985 0.944 0.998 0.809 0.986 0.881 0.998 0.888 0.969 0.937 0.992

SORVU 0.886 0.977 0.933 0.996 0.919 0.971 0.947 0.995 0.859 0.964 0.915 0.989 0.941 0.987 0.970 0.991

Species

DINO13 YOLO v818 WeedSwin

(Swin15) (CSPNet67) (Proposed)

mAP mAP50 mAP75 AvgRec mAP mAP50 mAP75 AvgRec mAP mAP50 mAP75 AvgRec

ABUTH 0.765 0.935 0.816 0.996 0.985 0.997 0.993 0.999 0.990 0.998 0.997 1.000

AMAPA 0.782 0.935 0.841 0.998 0.986 0.998 0.995 0.998 0.989 1.000 0.998 1.000

AMARE 0.731 0.886 0.778 0.973 0.973 0.987 0.982 0.997 0.980 0.990 0.987 1.000

AMATU 0.747 0.945 0.801 0.997 0.968 0.997 0.989 0.998 0.975 1.000 0.999 1.000

AMBEL 0.831 0.934 0.870 0.987 0.989 0.999 0.996 0.999 0.994 1.000 1.000 1.000

CHEAL 0.625 0.897 0.677 0.982 0.958 0.994 0.979 0.998 0.967 0.990 0.989 1.000

CYPES 0.743 0.909 0.799 0.985 0.986 0.999 0.996 0.998 0.991 1.000 1.000 1.000

DIGSA 0.685 0.851 0.709 0.997 0.981 0.998 0.994 0.997 0.987 1.000 1.000 1.000

ECHCG 0.755 0.881 0.824 0.993 0.985 0.999 0.995 0.998 0.989 1.000 1.000 1.000

ERICA 0.795 0.955 0.843 0.993 0.952 0.996 0.985 0.995 0.969 0.997 0.995 0.996

PANDI 0.799 0.943 0.868 0.994 0.973 0.998 0.992 0.997 0.984 1.000 0.997 1.000

SETFA 0.793 0.918 0.863 0.995 0.978 0.998 0.992 0.996 0.986 1.000 1.000 1.000

SETPU 0.727 0.899 0.772 0.991 0.971 0.995 0.989 0.995 0.976 0.994 0.994 0.997

SIDSP 0.892 0.962 0.913 0.997 0.991 1.000 0.998 0.999 0.993 1.000 1.000 1.000

SORHA 0.710 0.826 0.748 0.959 0.904 0.982 0.955 0.988 0.932 0.983 0.975 0.990

SORVU 0.722 0.858 0.755 0.894 0.945 0.984 0.975 0.993 0.959 0.985 0.982 0.997

Table 7. Performance Comparison of algorithms on BWD Test Datasets. Significant values are in bold.
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high accuracy (mAP consistently above 0.92 after Week 1), showing remarkable stability across the growth 
timeline. For CHEAL, while its performance (mAP ranging from 0.921 to 0.973) is slightly below WeedSwin, it 
still outperforms several other architectures, particularly in early growth stages. YOLO v8’s performance with 
AMATU is notable, achieving mAP values between 0.945 and 0.984, demonstrating strong detection capabilities 
for this challenging species throughout its growth cycle.

In contrast, DETR shows interesting variability in performance across species. While it struggles with early 
growth stages (Weeks 1-5) for most species with mAP values frequently below 0.5, it demonstrates remarkably 
high accuracy for AMATU throughout all growth stages (mAP > 0.99), suggesting species-specific detection 
capabilities. The DinoXSwin and DinoXResNet50 architectures show comparable performance patterns, with 
DinoXSwin maintaining a slight edge across most scenarios, though both models show lower performance for 
AMATU compared to other species, particularly in DinoXResNet50’s case (mAP as low as 0.782 in Week 5).

EfficientNet B4 displays inconsistent performance across different growth stages and species. While it 
occasionally achieves perfect detection, it shows significant fluctuations, particularly evident in SETFA detection 
during early weeks (mAP = 0.739 in Week 1) and DIGSA in later stages (mAP = 0.909 in Week 11). For AMATU, 
it demonstrates strong performance overall but with notable variability (dropping to mAP = 0.909 in Week 4).

While RetinaNet achieves the highest peak accuracy, both WeedSwin and YOLO v8 demonstrate exceptional 
consistency across growth stages and species, making them particularly suitable for practical agricultural 

Class Name

AMAPA AMBEL

RNet EffNet DETR DinoXS DinoXR YOLO WeedS RNet EffNet DETR DinoXS DinoXR YOLO WeedS

Week_1 0.944 0.957 0.417 0.951 0.946 0.947 0.948 0.989 0.949 0.398 0.927 0.920 0.931 0.932

Week_2 0.948 0.950 0.558 0.945 0.939 0.958 0.953 1.000 0.972 0.532 0.949 0.942 0.957 0.950

Week_3 1.000 0.973 0.396 0.968 0.960 0.972 0.963 1.000 0.993 0.436 0.971 0.966 0.978 0.970

Week_4 1.000 1.000 0.421 0.975 0.970 0.981 0.978 1.000 0.966 0.429 0.983 0.978 0.989 0.981

Week_5 0.991 0.992 0.439 0.985 0.979 0.987 0.980 1.000 0.981 0.475 0.986 0.983 0.992 0.987

Week_6 0.997 0.997 0.846 0.989 0.986 0.992 0.990 1.000 1.000 0.876 0.992 0.990 0.995 0.993

Week_7 1.000 1.000 0.902 0.993 0.992 0.996 0.994 1.000 0.994 0.904 0.997 0.996 0.998 0.998

Week_8 1.000 0.993 0.858 0.987 0.985 0.991 0.988 1.000 0.996 0.889 0.994 0.992 0.997 0.995

Week_9 0.984 0.860 0.915 0.981 0.976 0.989 0.982 0.909 0.971 0.912 0.986 0.984 0.991 0.988

Week_10 1.000 0.976 0.872 0.987 0.985 0.993 0.990 1.000 0.985 0.871 0.995 0.993 0.996 0.997

Week_11 1.000 0.996 0.895 0.992 0.990 0.997 0.995 1.000 0.981 0.892 0.992 0.990 0.998 0.996

Class Name

DIGSA SETFA

RNet EffNet DETR DinoXS DinoXR YOLO WeedS RNet EffNet DETR DinoXS DinoXR YOLO WeedS

Week_1 0.899 0.881 0.398 0.918 0.911 0.927 0.923 0.854 0.739 0.423 0.927 0.920 0.933 0.932

Week_2 0.975 0.928 0.472 0.956 0.950 0.952 0.960 0.957 0.823 0.521 0.949 0.942 0.949 0.950

Week_3 1.000 0.981 0.489 0.964 0.960 0.968 0.965 0.994 0.921 0.509 0.971 0.966 0.969 0.970

Week_4 0.998 0.993 0.463 0.975 0.970 0.979 0.978 0.907 0.866 0.502 0.983 0.978 0.980 0.981

Week_5 0.999 0.989 0.480 0.980 0.977 0.984 0.983 0.989 0.955 0.498 0.986 0.983 0.986 0.987

Week_6 1.000 0.998 0.900 0.986 0.983 0.989 0.988 0.998 0.929 0.899 0.992 0.990 0.991 0.993

Week_7 1.000 0.992 0.920 0.990 0.989 0.993 0.994 1.000 0.976 0.912 0.997 0.996 0.997 0.998

Week_8 1.000 0.993 0.899 0.988 0.987 0.992 0.990 1.000 0.957 0.898 0.994 0.992 0.994 0.995

Week_9 1.000 0.982 0.911 0.981 0.980 0.988 0.985 1.000 0.989 0.907 0.986 0.984 0.985 0.988

Week_10 1.000 0.929 0.874 0.987 0.986 0.993 0.991 1.000 0.998 0.897 0.995 0.993 0.996 0.997

Week_11 1.000 0.909 0.883 0.992 0.990 0.994 0.995 1.000 0.980 0.888 0.992 0.990 0.993 0.996

Class Name

CHEAL AMATU

RNet EffNet DETR DinoXS DinoXR YOLO WeedS RNet EffNet DETR DinoXS DinoXR YOLO WeedS

Week_1 0.885 0.887 0.412 0.918 0.912 0.921 0.923 0.951 0.989 0.992 0.935 0.864 0.945 0.999

Week_2 0.829 0.826 0.531 0.907 0.900 0.932 0.915 0.978 0.998 1.000 0.895 0.785 0.953 0.967

Week_3 0.983 0.870 0.498 0.964 0.960 0.949 0.970 0.995 1.000 1.000 0.905 0.791 0.961 0.981

Week_4 1.000 0.857 0.481 0.975 0.970 0.958 0.978 0.998 0.909 0.945 0.962 0.876 0.972 0.999

Week_5 1.000 0.979 0.493 0.980 0.977 0.961 0.983 1.000 0.999 1.000 0.901 0.782 0.975 0.986

Week_6 1.000 1.000 0.895 0.986 0.983 0.967 0.988 0.998 0.986 1.000 0.974 0.880 0.978 0.966

Week_7 1.000 0.983 0.923 0.990 0.989 0.973 0.994 1.000 1.000 1.000 0.954 0.989 0.983 1.000

Week_8 1.000 0.944 0.899 0.988 0.987 0.969 0.990 1.000 1.000 1.000 0.988 0.946 0.979 0.976

Week_9 1.000 0.938 0.911 0.981 0.980 0.963 0.985 1.000 0.997 0.996 0.969 0.878 0.974 0.917

Week_10 1.000 0.965 0.885 0.987 0.986 0.968 0.991 0.983 0.984 0.991 0.999 0.795 0.980 0.952

Week_11 1.000 0.988 0.892 0.992 0.990 0.971 0.995 1.000 1.000 1.000 0.924 0.895 0.984 0.977

Table 8. Weekly Performance Comparison (mAP) for Different Weed Species. RNet: RetinaNet, EffNet: 
EfficientNet B4, DinoXS: DinoXSwin, DinoXR: DinoXResNet50, YOLO: YOLO v8, WeedS: WeedSwin.
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applications. WeedSwin maintains a slight edge in overall performance, especially for challenging species like 
AMATU, while YOLO v8 offers competitive accuracy with the added benefit of its renowned speed and efficiency. 
This stability in performance, regardless of plant maturity or species, represents a significant advantage for real-
world weed management systems where reliable detection throughout the growing season is crucial.

Ablation study
To better understand the contribution of different architectural components and training strategies to the 
performance of our WeedSwin model, we conducted a comprehensive ablation study. We systematically modified 
key aspects of the original model to analyze their impact on detection accuracy, recall, and computational 
efficiency. Our ablation study examines three aspects: backbone architecture modifications, encoder-decoder 
enhancements, and training optimization strategies. Table 9 presents a quantitative comparison of these variants 
against the original WeedSwin model.

Lightweight backbone
In this experiment, we explored the impact of simplifying the backbone architecture to achieve better 
computational efficiency while maintaining competitive performance. We reduced the depth of the model from 
[2, 2, 18, 4] to [2, 2, 9, 2], effectively halving the complexity of the third and fourth stages. Additionally, we 
reduced the window size from 12 to 7 pixels and decreased the drop path rate from 0.2 to 0.1. This configuration 
yielded a 25% reduction in FLOPs (0.085T compared to the original 0.114T) with only minimal parameter 
reduction (40.12M vs. 40.48M). While detection performance showed a moderate decrease (mAP: 0.969 vs. 
0.993, mAR: 0.958 vs. 0.985), the model maintained 96-97% of the original performance with significantly lower 
computational requirements, making it suitable for resource-constrained deployment scenarios.

Enhanced encoder-decoder
Our second variant focused on improving feature representation capabilities by enhancing the encoder-decoder 
architecture. We increased the number of feature levels from 4 to 5, enabling the model to better capture multi-
scale features critical for detecting objects of varying sizes. We also deepened the encoder and decoder by 
increasing their layers from 4 to 6, while reducing the feedforward channel dimensions from 2048 to 1024 
to partially mitigate computational overhead. This configuration achieved the highest detection recall (mAR: 
0.996) among all variants while maintaining the same precision as the original model (mAP: 0.993). However, 
these performance improvements came at a significant computational cost, with more than doubled FLOPs 
(0.250T), substantially increased parameters (269M), and reduced inference speed (80.60 FPS vs. 218.27 FPS). 
This variant demonstrates the upper bounds of performance achievable through architectural enhancements 
when computational efficiency is not a primary concern.

Optimized training
The third variant investigated the impact of alternative training strategies without modifying the model 
architecture. We increased the base learning rate from 0.0001 to 0.0002 and replaced the stepped learning rate 
schedule with a cosine annealing schedule to provide smoother learning rate decay. We also reduced the weight 
decay parameter from 0.05 to 0.03 and modified the denoising training configuration by decreasing both label 
noise scale (0.3 vs. 0.5) and box noise scale (0.6 vs. 1.0). These changes aimed to improve convergence and reduce 
overfitting. The performance results showed a slight decrease in detection accuracy (mAP: 0.982 vs. 0.993, mAR: 
0.980 vs. 0.985) compared to the original model. Interestingly, despite maintaining the same architecture, this 
variant showed computational characteristics similar to the Enhanced Encoder-Decoder variant, which may be 
attributed to implementation details of the training optimizations. This experiment highlights the sensitivity 
of transformer-based detectors to training hyperparameters and the importance of carefully tuning them for 
optimal performance.

Model configuration

Model architecture variations Performance metrics

Reduced 
depth

Smaller 
window

More 
levels

Deeper 
E-D Cosine LR DN Config mAP↑ mAR↑ FPS↑

FLOPs 
(T)↓

Params 
(M)↓

WeedSwin (Original) 0.993 0.985 218.27 0.114 40.48

Lightweight Backbone ✓ ✓ 0.969 0.958 210.51 0.085 40.12

Enhanced Encoder-Decoder ✓ ✓ 0.993 0.996 80.60 0.250 269.00

Optimized Training ✓ ✓ 0.982 0.980 88.14 0.254 265.00

Table 9. Ablation study on WeedSwin model architecture. The Lightweight Backbone variant focuses on 
reduced computational complexity with shallower transformer depths [2,2,9,2] and smaller window size 
(7), achieving 25% FLOPs reduction with minimal performance impact. The Enhanced Encoder-Decoder 
variant improves feature representation through increased feature levels (5) and deeper encoder-decoder (6 
layers), achieving highest detection recall at cost of speed. The Optimized Training variant explores alternative 
optimization strategies with cosine scheduling and modified denoising parameters, showing balance between 
accuracy and computational requirements. Significant values are in bold.
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Discussion
This study presents a comprehensive evaluation of state-of-the-art object detection algorithms in agricultural 
weed detection, utilizing extensive datasets that encompass both Alpha Weeds Dataset (AWD) and Beta Weeds 
Dataset (BWD) scenarios. The research analyzes hundreds of thousands of images across sixteen weed species 
and eleven growth stages, providing deep insights into the performance characteristics of various detection 
architectures. Among the evaluated models, our proposed WeedSwin architecture—which incorporates a 
modified Swin Transformer-based encoder-decoder framework with additional specialized layers—consistently 
demonstrates superior performance. The architecture achieves an optimal balance between detection accuracy, 
recall, and inference speed, addressing the critical requirements of precision agriculture where both accuracy 
and real-time processing capabilities are essential. These findings underscore the significance of developing 
robust and efficient weed detection models, particularly in agricultural applications where precise identification 
and rapid response times can significantly impact crop management outcomes. The results not only validate 
the effectiveness of our proposed approach but also provide valuable insights into the relative strengths and 
limitations of current object detection methodologies in agricultural contexts.

One of the most striking outcomes emerges from comparing WeedSwin to other prominent models, including 
RetinaNet19, DETR16, EfficientNet B417, DINO13 variants, and YOLO v818. Table 10 summarizes the performance 
of these models on both the AWD and BWD datasets. This table clearly indicates that models trained on the 
BWD dataset—which was preprocessed using SAM-2—demonstrated achieved higher performance (in both 
mAP and mAR) compared to those trained on the AWD dataset, which used traditional preprocessing methods. 
While RetinaNet19 and EfficientNet B417 achieve exceptionally high Frames Per Second (FPS) values (504.36 and 
490.65 FPS respectively), they exhibit slightly lower mAP and mAR scores compared to WeedSwin. The newly 
added YOLO v818 delivers impressive speed (422.48 FPS) while maintaining competitive accuracy (0.972 mAP 
on AWD test and 0.990 on BWD test), though its recall performance on the AWD dataset (0.899 mAR) is lower 
than some other models. Conversely, models like DINO13 with a Swin15 backbone reach marginally higher mAP 
scores (0.994 on BWD test) but at a reduced inference speed (152.62 FPS). DETR16, while showing respectable 
accuracy (0.984 mAP on the BWD test), is considerably slower (80.65 FPS), making it less suitable for real-time 
field operations.

Although YOLO v818 presents a compelling balance of speed and accuracy, WeedSwin’s performance still 
stands out due to its specialized design. While YOLO v8 offers faster inference (422.48 FPS compared to 
WeedSwin’s 218.27 FPS), WeedSwin maintains both superior mAP scores on the AWD dataset (0.981 vs. 0.972 
on test) and notably higher mAR values (0.898 vs. 0.899 for test but 0.911 vs. 0.890 for train), demonstrating 
more consistent recall capabilities. This indicates that WeedSwin’s architecture is particularly effective for weed 
detection tasks, especially in the more challenging AWD dataset scenarios where comprehensive detection is 
crucial. In real-world agricultural applications, both models represent viable options, with YOLO v8 potentially 
preferred when processing speed is paramount, and WeedSwin favored when balanced accuracy and recall 
across complex weed detection scenarios are required. Figure 8 shows the performance comparison of various 
object detection models on AWD and BWD datasets.

The strength of WeedSwin is also reflected in the species-wise and stage-wise analyses. For instance, the 
evaluation across 16 weed species on the BWD dataset shows that WeedSwin achieves consistently high 
mAP and mAR values. Where some architectures struggle with specific “driver weed” species—those that are 
herbicide-resistant, widely distributed, and/or particularly damaging to crop yields—WeedSwin maintains 
exceptional detection capability. The model’s steady performance is evidenced even at higher IoU thresholds 
(mAP_75), confirming its ability to localize weeds precisely within bounding boxes. An especially relevant 
finding is WeedSwin’s robust performance across all growth stages. Early detection of weeds, when plants are 
just emerging, is crucial because timely intervention can prevent yield losses and increase herbicide efficacy. 
Many models perform well once weeds have fully matured, but they stumble during initial growth stages when 
morphological distinctions are subtler. RetinaNet19 and EfficientNet B417, for example, excel at detecting mature 
weeds in later weeks but are less reliable during Weeks 1-3, as evidenced by their reduced mAP scores for species 
like SETFA and CHEAL at early stages. In contrast, WeedSwin demonstrates a remarkable consistency from 

Model Backbone

AWD Dataset (203,567 
images)52

BWD Dataset (120,341 
images) FPS↑

mAP↑ mAR↑ mAP↑ mAR↑
Train Test Train Test Train Test Train Test

RetinaNet19 ResNext 10158 0.907 0.904 0.997 0.989 0.978 0.982 0.945 0.947 504.36

EfficientNet B417 ResNet 5014 0.940 0.931 0.892 0.865 0.987 0.989 0.948 0.967 490.65

DETR16 ResNet 5014 0.854 0.840 0.941 0.936 0.984 0.984 0.929 0.985 80.65

DINO13 ResNet 10114 0.896 0.872 0.888 0.844 0.991 0.992 0.977 0.979 120.67

DINO13 Swin15 0.973 0.966 0.891 0.882 0.993 0.994 0.981 0.986 152.62

YOLO v818 CSPNet67 0.975 0.972 0.890 0.899 0.989 0.990 0.968 0.971 422.48

WeedSwin (Ours) Swin15 0.988 0.981 0.911 0.898 0.992 0.993 0.985 0.985 218.27

Table 10. Performance Comparison of Different Models on AWD52 and BWD Datasets. Best results are 
highlighted in bold. WeedSwin (our proposed model) shows consistent performance across both datasets while 
maintaining competitive inference speed.
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Week 1 through Week 11, indicating that the model effectively captures subtle features that distinguish juvenile 
weeds from soil, residue, or young crops.

Figure 7 demonstrates WeedSwin’s robust detection capabilities across various weed species at different 
growth stages, showcasing the model’s versatility and accuracy. In early growth stages, exemplified by ABUTH 
(week 2) and DIGSA (week 2), the model achieves impressive confidence scores of 97.2% and 97.0% respectively, 
despite the challenges of detecting newly emerged plants with minimal distinguishing features. The model’s 
effectiveness in early-stage detection is further validated by its high-confidence identification of ECHCG (week 
1) at 98.0%, where the plant presents as a single emerging leaf. This early-stage detection capability is particularly 
valuable for timely weed management interventions. Equally noteworthy is WeedSwin’s performance with mature 
plants, as evidenced by ERICA (week 11) and AMBEL (weeks 9 and 11) detections, achieving confidence scores 
of 97.6% and 97.0-97.2% respectively. The model maintains high accuracy despite the increased complexity 
of mature plant structures, including dense foliage and overlapping leaves. This is particularly evident in the 

Fig. 8. Comparison of model performance (mAP vs. FPS) on the AWD and BWD Datasets.

 

(a) ABUTH_week_2: 97.2 (b) DIGSA_week_2: 97.0 (c) ECHCG_week_1: 98.0 (d) ERICA_week_11: 97.6

(e) AMBEL_week_11: 97.2 (f) AMBEL_week_9: 97.0 (g) CHEAL_week_6: 96.0 (h) PANDI_week_6: 96.5

Fig. 7. Detection results of WeedSwin model across various weed species and growth stages. The images 
illustrate WeedSwin’s capability to detect weeds such as ABUTH, DIGSA, ECHCG, ERICA, AMBEL, CHEAL, 
and PANDI with confidence scores annotated for each prediction.
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AMBEL week 11 sample, where the model successfully identifies the entire plant structure despite its intricate 
branching pattern. The model also demonstrates consistent performance with mid-growth stage specimens, such 
as CHEAL (week 6) and PANDI (week 6), achieving confidence scores of 96.0% and 96.5% respectively. These 
results highlight WeedSwin’s ability to maintain reliable detection accuracy across the entire plant growth cycle, 
from emergence to maturity, while handling diverse morphological characteristics of different weed species. This 
consistent performance across growth stages and species makes WeedSwin particularly valuable for practical 
agricultural applications requiring reliable weed detection throughout the growing season.

The superiority of WeedSwin also extends to challenging species such as AMBEL and DIGSA. WeedSwin 
records near-perfect detection scores even for these difficult targets. The weekly performance evaluations show 
that, as weeds advance through their growth stages, WeedSwin’s detection performance remains stable and 
high—mitigating the risk of missing early-stage weeds that could later proliferate into substantial infestations. 
Figure 6 provides a qualitative illustration of WeedSwin’s detection proficiency compared to other models. In 
these visual comparisons, WeedSwin’s predicted bounding boxes for species such as ABUTH and ERICA align 
closely with the ground truth annotations. The model’s high-confidence detections and precise localization 
exemplify its potential for real-world application. Whether integrated into an autonomous sprayer or used in 
a scouting drone’s processing pipeline, WeedSwin’s accurate bounding boxes can guide more intelligent weed 
control strategies—applying herbicides only where necessary and minimizing chemical inputs.

From a broader perspective, this research represents a significant advancement in agricultural computer 
vision through its comprehensive scope and innovative approach. Unlike previous studies that focused on limited 
species or growth stages, our evaluation encompasses two extensive datasets (AWD and BWD) covering 16 weed 
species across 11 growth stages, including critical weeds for USA such as AMAPA, AMBEL, DIGSA, SETFA, 
CHEAL, and AMATU—species notorious for their herbicide resistance and agricultural impact. The comparative 
analysis highlights two standout architectures: WeedSwin and YOLO v818. WeedSwin distinguishes itself through 
its purposeful design for agricultural challenges, moving beyond simple adaptations of general object detection 
models. Its innovative integration of a Swin15 Transformer-based encoder/decoder framework with specialized 
layers effectively addresses the complex variations in weed morphology, maintaining superior recall metrics 
on the challenging AWD dataset. Meanwhile, YOLO v818 demonstrates remarkable efficiency (422.48 FPS) 
while achieving competitive mAP scores (0.972/0.990 on AWD/BWD test sets), though with somewhat lower 
recall performance on AWD data (0.890/0.899 train/test). When compared to other architectures like DINO13, 
EfficientNet B417, RetinaNet19, and DETR16, these two models effectively address the traditional speed-accuracy 
trade-off from complementary angles—WeedSwin emphasizing detection reliability across diverse weed 
morphologies with balanced metrics, and YOLO v8 prioritizing processing speed while maintaining competitive 
precision. This dual advancement provides agricultural practitioners with options tailored to specific operational 
needs: YOLO v8 for high-throughput scenarios where detection speed is critical, and WeedSwin for applications 
requiring balanced precision and recall across complex weed variations. Together, these architectures represent 
significant progress toward automated, real-time weed management systems capable of operating effectively 
throughout the growing season.

(a) original image (b) ground truth (c) prediction –
DINO – Res101

(d) prediction –
EfficientNet B4

(e) prediction –
DINO – Swin

(f) prediction –
WeedSwin

Fig. 6. Comparison of object detection results for ABUTH and ERICA using DINO-Resnet 101, EfficientNet 
B4, DINO-Swin and Weedswin models for BWD dataset. Row 1 displays the original image, ground truth, 
and predictions with model confidence scores and bounding box for ABUTH Week 6, and Row 2 displays for 
ERICA Week 4.
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Despite these promising results, it’s important to acknowledge certain limitations of this study. The current 
evaluation, conducted under controlled greenhouse conditions, may not fully represent the challenges faced 
in real-world agricultural settings, such as varying weather conditions, extreme lighting variations, and 
complex weed-crop interactions. Additionally, while WeedSwin’s 218.27 FPS performance is sufficient for many 
applications, deployment on resource-constrained edge devices in the field may require further optimization.

Conclusions
This research presents a comprehensive advancement in agricultural weed detection through the development 
and evaluation of novel deep learning architectures across extensive temporal datasets. By introducing two 
meticulously curated datasets—AWD and BWD—encompassing 16 weed species through 11 growth stages, 
this study establishes a robust foundation for automated weed detection systems. The integration of advanced 
preprocessing techniques, including SAM-2 and traditional computer vision methods, coupled with state-of-
the-art deep learning architectures, particularly our proposed WeedSwin Transformer, demonstrates significant 
improvements in detection accuracy and processing efficiency. The research successfully addresses critical 
challenges in precision agriculture while providing practical solutions for real-world implementation. Key 
contributions of this study include:

• Development of comprehensive AWD and BWD datasets, featuring complete growth cycles of economically 
significant weed species, providing an invaluable resource for agricultural computer vision research

• Introduction of the WeedSwin architecture, achieving superior performance metrics (mAP: 0.993, mAR: 
0.985) while maintaining practical processing speeds (218.27 FPS)

• Implementation of innovative preprocessing techniques combining SAM-2 and traditional methods, ensur-
ing high-quality annotations and robust model training

• Demonstration of consistent detection performance across growth stages and species, particularly for chal-
lenging driver weeds” that significantly impact U.S. agriculture

While this research represents a significant step forward in automated weed detection, several areas warrant 
further investigation. The controlled greenhouse environment of the current datasets presents limitations in terms 
of geographical scope, environmental variability, and real-world applicability under conditions such as varying 
illumination, occlusion, and complex weed-crop interactions, suggesting the need for expansion to include field 
conditions and greater environmental variability. Our future research will directly address these limitations 
through systematic field validation of WeedSwin across diverse agricultural environments. We are currently 
working on multi-season field data under varying lighting conditions (morning, noon, evening), different soil 
backgrounds (sandy, clay, loam), and natural weed densities. This extended dataset will feature challenging 
scenarios including partial occlusion, shadow effects, and mixed-species patches that better represent real-world 
farming conditions. Nevertheless, this study’s comprehensive approach and robust findings establish a strong 
foundation for advancing precision agriculture. The demonstrated capabilities of the WeedSwin architecture, 
combined with the extensive temporal datasets, provide a pathway toward more sustainable farming practices 
through reduced herbicide use and improved crop management efficiency. These contributions collectively 
support the ongoing evolution of precision agriculture, balancing environmental sustainability with agricultural 
productivity.

Data availability
The dataset and associated code generated during the current study are not publicly available due to grant re-
quirements, but are available from the corresponding author on reasonable request.
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