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Abstract

Weed management represents a critical challenge in
agriculture, significantly impacting crop yields and requir-
ing substantial resources for control. Effective weed moni-
toring and analysis strategies are crucial for implementing
sustainable agricultural practices and site-specific manage-
ment approaches. We introduce WeedSense, a novel multi-
task learning architecture for comprehensive weed anal-
ysis that jointly performs semantic segmentation, height
estimation, and growth stage classification. We present
a unique dataset capturing 16 weed species over an 11-
week growth cycle with pixel-level annotations, height mea-
surements, and temporal labels. WeedSense leverages a
dual-path encoder incorporating Universal Inverted Bot-
tleneck blocks and a Multi-Task Bifurcated Decoder with
transformer-based feature fusion to generate multi-scale
features and enable simultaneous prediction across multiple
tasks. WeedSense outperforms other state-of-the-art mod-
els on our comprehensive evaluation. On our multi-task
dataset, WeedSense achieves mloU of 89.78% for segmenta-
tion, 1.67cm MAE for height estimation, and 99.99% accu-
racy for growth stage classification while maintaining real-
time inference at 160 FPS. Our multitask approach achieves
3 faster inference than sequential single-task execution
and uses 32.4% fewer parameters. Please see our project
page at weedsense.github.io.

1. Introduction

Weed management is a critical challenge in agriculture,
with weeds causing global potential yield losses of 34%
across major crops [33]. Precise identification and monitor-
ing of weed growth are essential for effective and sustain-
able agricultural practices, yet traditional methods are of-
ten labor-intensive and lack the granularity needed for site-
specific weed management (SSWM) [2, 8].

The timing of weed intervention is fundamentally linked
to the Critical Period of Weed Control (CPWC) - the time-

frame during which crops must remain weed-free to prevent
significant yield losses [060]. Since weeds emerging with
or shortly after crop emergence cause substantially greater
yield losses [5, 45], precise early growth stage identifica-
tion is critical. While traditional phenological scales like
BBCH-scale [17, 26] are designed for crop development,
weekly monitoring intervals align better with CPWC time-
frames and agricultural scheduling practices. Current weed
control methods face significant limitations: manual weed-
ing is labor-intensive and impractical for large-scale opera-
tions [0, 9], while excessive herbicide use has led to envi-
ronmental pollution and resistance [28, 43]. Precision her-
bicide application, enabled by accurate weed detection, of-
fers potential for reducing chemical usage by 54% while
maintaining efficacy [16], necessitating automated identifi-
cation systems for real-time, spatially-precise detection.

Deep learning has advanced computer vision tasks,
achieving state-of-the-art results in image classification [15,
42], object detection [11], and semantic segmentation [56,
59]. In agriculture, these techniques have been increas-
ingly applied to crop/weed classification [21], disease de-
tection [7, 12, 31], and yield prediction [23]. Computer
vision, particularly deep learning, offers a promising av-
enue for automating weed monitoring, enabling rapid and
accurate weed detection [13, 14], growth stage classifica-
tion [1, 47], and plant height estimation [32].

For semantic segmentation, early approaches relied on
hand-crafted features [53], while modern architectures like
FCNs [29], U-Net [38], DeepLab [4], and BiSeNetV2 [56]
have enabled more accurate pixel-wise classification. These
methods have been adapted for weed segmentation [19, 50]
but often lack the capability to analyze growth patterns over
time, limiting their utility for comprehensive weed manage-
ment systems.

Plant height estimation has evolved from Structure-
from-Motion [52] and stereo vision [24] approaches that
reconstruct 3D plant models [10, 20] to deep learning meth-
ods [58] that directly learn height-related features from im-
ages. Similarly, growth stage classification has progressed
from manual inspection to CNNs [36] and recurrent net-
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Figure 1. The proposed WeedSense framework consists of three main modules: A Dual-path UIB Encoder with parallel Detail and
Semantic branches to extract multi-scale features; an Aggregation Layer that fuses these features through attention-guided operations;
and a Multi-Task Bifurcated Decoder that simultaneously predicts semantic segmentation masks (17 classes including background), plant
height (regression), and growth stage (11 classes). “UIB” indicates Universal Inverted Bottleneck blocks.

works like LSTMs [18] that can model temporal dependen-
cies [51]. However, while deep learning approaches have
been applied to plant height estimation in crops, their ap-
plication specifically to weed height estimation represents a
novel contribution, particularly when integrated with other
analysis tasks.

Multi-task learning (MTL) aims to improve performance
across multiple related tasks by leveraging shared repre-
sentations [39]. While MTL has been applied to plant
phenotyping [34], yield prediction [44], and disease detec-
tion [22], comprehensive weed analysis integrating segmen-
tation, height regression, and growth stage classification re-
mains largely unexplored.

To address this gap, we introduce WeedSense, which
builds upon the efficient BiSeNetV2 [56] framework, incor-
porating Universal Inverted Bottleneck (UIB) blocks [35]
in the Dual-path UIB Encoder (DUE) encoder for enhanced
feature representation. A key innovation is our Multi-Task
Bifurcated Decoder (MTBD) with a Temporal Growth De-
coder (TGD) component, which leverages a transformer-
based feature fusion mechanism to jointly learn height re-
gression and growth stage classification from a shared fea-
ture representation. Our growth stage classification ap-
proach predicts growth stages using weekly development
intervals. The TGD uses multi-head self-attention [49] to
capture complex relationships between visual features and
growth attributes. To support this research, we developed a

new, richly annotated dataset capturing the growth patterns
of 16 distinct weed species over an 11-week period, from
sprouting to flowering stage. Collected under controlled
greenhouse conditions, it includes high-resolution video se-
quences with per-pixel semantic segmentation masks, pre-
cise weekly height measurements, and weekly growth la-
bels. Our main contributions are:

* We introduce a new dataset of 16 weed species with anno-
tations for semantic segmentation, height regression, and
growth stage classification across their complete life cy-
cle.

* We propose WeedSense, a multi-task learning architec-

ture that jointly performs semantic segmentation, height

estimation, and growth stage classification.

We evaluate WeedSense’s performance on our dataset and

compare it with other state-of-the-art models.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our dataset, Section 3 details the Weed-
Sense architecture, Section 4 presents experimental results
and ablation studies, and Section 5 concludes with a discus-
sion of implications and future work.

2. Dataset

We present a novel multi-task temporal dataset of 16 weed
species growth patterns for semantic segmentation, height
regression, and growth stage classification. The dataset
spans 11 weeks from sprouting through flowering, provid-
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Figure 2. Growth progression over 11 weeks for three subjects (SETFA, AMARE, and ERICA), showing weekly development from week

1 to week 11. Best viewed on screen.

ing comprehensive coverage of the primary growth cycle
for weed species commonly found in Midwestern cropping
systems of the USA.

Image Height (cm)  Growth

Species [25] (Scientific Name [3]) Count Max Std Dev (cm/week)

Fast-growing species (>10 cm/week)

AMATU (Amaranthus tuberculatus (Moq.) Sauer.) 7,457 155.00 46.34 13.72
SORHA (Sorghum halepense (L.) Pers.) 5,540 121.00 45.57 14.06
SETFA (Setaria faberi Herrm.) 7,787 124.00 42.39 11.75

Medium-growing species (5-10 cm/week)

SORVU (Sorghum bicolor (L.) Moench.) 4,787 100.00 38.21 9.84
PANDI (Panicum dichotomiflorum Michx.) 7,577 87.00 32.46 8.40
SETPU (Setaria pumila (Poir.) Roem.) 7,971 99.00 29.98 8.20
DIGSA (Digitaria sanguinalis (L.) Scop.) 9,211 77.00 27.84 7.53
ECHCG (Echinochloa crus-galli (L.) P. Beauv.) 8,562 80.00 26.35 7.38
SIDSP (Sida spinosa L.) 6,977 69.00 24.10 6.77
AMARE (Amaranthus retroflexus L.) 7,951 75.00 23.83 6.86
ABUTH (Abutilon theophrasti Medik.) 8,770 72.00 22.55 6.32
AMBEL (Ambrosia artemisiifolia L.) 8,630 71.00 22.07 6.19

Slow-growing species (<5 cm/week)

AMAPA (Amaranthus palmeri S. Watson.) 9,080 62.00 19.82 5.66
CYPES (Cyperus esculentus L.) 8,131 56.00 18.26 5.42
CHEAL (Chenopodium album L.) 4,670 30.00 12.97 2.86
ERICA (Erigeron canadensis L.) 7,240 17.30 6.37 1.70

Table 1. Statistical summary of our weed species dataset (120,341
images) categorized by growth rates. The data shows significant
variation in maximum height (17.3-155.0 cm) and growth pat-
terns (1.70-14.06 cm/week), presenting diverse challenges for our
multi-task learning approach.

Data Collection. =~ We conducted this study during the
spring and summer of 2024 at the SIU Horticulture Re-
search Center greenhouse facility. The greenhouse was
equipped with 1000W High Pressure Sodium grow lights
maintaining optimal temperatures of 30-32°C. We used 32
square containers (10.7 cm x 10.7 cm x 9 cm) with two con-
tainers per species, where each container housed a single
weed plant, creating replicate pairs for each species. Each
container was filled with Pro-Mix® BX potting medium.

Weeds were maintained through regular watering based on
soil moisture requirements and an all-purpose 20-20-20
nutrient solution applied every three days. Data acqui-
sition utilized an iPhone 15 Pro Max positioned 1.5 feet
above specimens, capturing 360-degree video documenta-
tion at 1440 x 1920 resolution and 30 FPS. We recorded 349
videos (15-30 seconds each) on a weekly basis through-
out developmental stages, with the camera rotating around
each plant to capture all viewing angles. Video recording
was chosen over still images to ensure comprehensive an-
gular coverage of each specimen in a single capture session.
Minor protocol deviations occurred during collection: one
plant each from SORVU and CHEAL duplicate pairs died
after the third week, and SORHA weeds emerged only after
the second week rather than the planned first week, while
all remaining species successfully emerged within the first
week. Despite these variations, consistent data collection
procedures were maintained across all species throughout
the complete 11-week monitoring period. We implemented
systematic growth stage monitoring based on established
phenological standards, with weekly imaging from week 1
(BBCH stage 11, first true leaf visible) through week 11
(BBCH stage 60, initial flower appearance). This tempo-
ral framework captured the complete vegetative growth cy-
cle and transition to reproductive development across all
species. Fig. 2 illustrates the temporal progression across
three representative species (SETFA, AMARE, ERICA),
demonstrating the diverse growth patterns and morphologi-
cal changes captured in our dataset.

Data Preprocessing and Annotation. We applied two pre-
processing steps: (1) temporal downsampling by extract-
ing every 2nd frame from the 30 FPS videos to reduce re-
dundancy, and (2) spatial downscaling to 720 x 960 pix-
els while preserving the original 3:4 aspect ratio. The re-
sulting dataset contains 120,341 frames extracted from 349



videos, divided into training (80%), validation (10%), and
test (10%) sets using frame-level splitting ensuring bal-
anced species representation across splits.

For annotation, we employed the SAM2-Hiera-L [37]
model to semi-automatically generate segmentation masks,
with manual verification and correction. Plant components
including stems, leaves, and flowers are labeled as a sin-
gle foreground category. Each image is annotated with its
corresponding growth week (1-11) based on capture date.
We manually measured weed heights on a weekly basis,
recording 325 measurements that revealed substantial vari-
ation across species, from 0.2 cm to 155 cm (A = 154.8
cm). Table 1 presents key statistics for each species, show-
ing significant inter- and intra-species variability. AMATU
demonstrates the most aggressive growth, averaging 13.72
cm weekly increase and reaching 155 cm, while ERICA ex-
hibits the slowest growth (1.70 cm/week) with a maximum
height of just 17.3 cm. The height data reveals substantial
intra-species variability, with standard deviations ranging
from 6.37 cm to 46.34 cm, presenting challenging regres-
sion targets for our models. The resulting dataset combines
high-resolution RGB images, segmentation masks, height
measurements, and weekly growth stage labels, enabling
comprehensive analysis of weed species growth patterns
throughout their complete life cycle.

3. Method

This section introduces our Dual-path UIB Encoder with
Multi-Task Bifurcated Decoder, an efficient framework for
semantic segmentation and temporal growth analysis. As
shown in Fig. 1, our model consists of two main encoder
pathways that extract complementary information from in-
put RGB images, and a bifurcated decoder that enables
joint learning of multiple tasks. We denote feature maps as
C x H x W where C, H, and W represent spatial channel
dimensions, height, and width respectively.

3.1. Dual-path UIB Encoder

Building upon the dual-path design of BiSeNetV2 [56], our
encoder efficiently balances spatial detail preservation and
semantic context extraction through specialized branches
while incorporating UIB blocks for enhanced feature rep-
resentation.

Detail Branch. The Detail Branch captures fine-grained
spatial details crucial for accurate boundary delineation.
Following a shallow-wide architecture inspired by VG-
GNet [42], it consists of three sequential stages (S1, S2,
S3) that generate feature maps with progressively reduced
spatial resolutions (H/2, H/4, H/8) and expanded channel
dimensions (64, 64, 128). Each stage applies 3x3 convolu-
tions followed by batch normalization and ReLU activation.
Semantic Branch. The Semantic Branch follows a deep-
narrow architecture with aggressive downsampling to ef-

Figure 3. Visualization of attention activation maps from the ag-
gregation layer for AMAPA at week 10. Each task displays dis-
tinct activation patterns: segmentation shows uniform boundary-
focused activation, height estimation concentrates on plant ex-
tremities, and growth stage classification focuses on stem and ma-
ture leaf regions containing temporal growth indicators.

ficiently capture semantic context. It begins with a Stem
Block for efficient initial feature extraction and downsam-
pling, inspired by Inception [46] networks to balance com-
putational efficiency with feature richness. The branch
then employs hierarchical UIB blocks organized in three
stages (S3, S4, S5_1) that progressively downsample fea-
tures while increasing channel capacity, concluding with a
context embedding block for global context enhancement.
Universal Inverted Bottleneck Blocks. As the core com-
ponent of our Semantic Branch, we replace the original
Gather-and-Expansion blocks [56] from BiSeNetV2 with
UIB blocks from MobileNetV4 [35]. UIB blocks use
configuration notation S[start]-M[mid]-E[end] representing
kernel sizes for start, middle, and end depthwise convolu-
tions, where kernel size 0 indicates the operation is skipped
(identity mapping). Our SO-M3-EO configuration employs
only the middle 3x3 depthwise convolution:

Fezp = Convyx1(Fin) - ExpRatio

Fau = DWConv3yx3(Feap)

Fse = SE(Fay)

Fout = LayerScale(Convix 1 (Fse)) + Fin - 8
where ExpRatio=6, SE enables adaptive channel recalibra-
tion with reduction ratio 0.25, LayerScale ensures stable
training [48], and & enables residual connections when di-
mensions match. The UIB blocks are organized hierarchi-
cally across three stages (S3, S4, S5_1) with progressive
downsampling and channel expansion. To enhance global
context modeling, we apply a Context Embedding Block af-
ter the final UIB stage that captures global statistical infor-
mation through adaptive average pooling and residual con-
nections.
Aggregation Layer. Having extracted complementary in-
formation through our dual-path design, we now need to
effectively combine these heterogeneous features. The Ag-
gregation Layer uses semantic features as intelligent guides
to direct where detail features should focus, creating a uni-
fied representation that preserves spatial precision while in-
corporating semantic understanding. This aggregated rep-
resentation then serves as input to our multi-task decoder.
Auxiliary Supervision Strategy. We implement four aux-

@)



Segmentation |

Height Estimation

| Growth Stage Classification

Model mloU mF1 MAE RMSE R? Max Error Within Within Within Accuracy F1
Pt (@)1 | (m)l  (em)l T (cm)| lem (%)t 2em (%)t Sem (%)t (%)t (%)t
MTL-SegFormer 56.17  70.56 5.10 8.03 0.9289 61.07 25.21 40.15 65.16 97.96 98.22
MTL-UNet 51.51 66.3 2.15 3.03 0.9899 29.22 39.07 60.5 89.14 99.97 99.97
MTL-Poolformer | 72.45  83.53 4.20 6.74 0.9499 52.52 29.08 45.29 72.41 98.70 98.89
MTL-BiSeNetV1 87.25  93.08 1.97 2.81 0.9913 18.89 41.22 63.90 91.51 99.99 99.99
MTL-BiSeNetV2 | 89.29  94.26 1.75 2.51 0.9930 24.39 44.11 68.13 94.30 100.00 100.00
MTL-SFNet 86.27 9251 421 6.66 0.9511 69.24 26.36 44.53 72.33 98.45 98.74
WeedSense \ 89.78  94.54 \ 1.67 2.32 0.9941 19.34 43.26 70.37 95.49 \ 99.99 99.99

Table 2. Quantitative comparison of multi-task learning models for weed species analysis. Our WeedSense model achieves best or
competitive performance across segmentation, height estimation, and growth stage classification metrics. Bold indicates best results.

iliary segmentation heads connected to different stages of
the Semantic Branch (Stem Block, S3, S4, and S5_1), with
stage-specific upsampling factors (4%, 8%, 16X, and 32x
respectively). These heads facilitate effective gradient flow
during training while being discarded during inference, thus
incurring no additional computational cost.

3.2. Multi-Task Bifurcated Decoder

Our MTBD processes the aggregated features (128 x H /8 x
W/8) from the encoder through parallel pathways for se-
mantic segmentation and temporal growth prediction.
Semantic Segmentation Head. The segmentation head
follows an encoder-decoder structure with progressive up-
sampling to recover full spatial resolution:

F,iq = Dropout(Convzx3(Fagg))

2
M = PixelShuffle(Convi x 1 (Fiid)) @

where 7,4, represents the aggregated features and M is the
predicted segmentation mask at resolution N3 X H x W,
with N, representing the number of classes (17 classes in-
cluding background). PixelShuffle [41] provides parameter-
free 8 upsampling by reorganizing channel data into spa-
tial dimensions.

Temporal Growth Decoder. The TGD predicts plant
height and growth stage through global feature processing.
Aggregated features undergo adaptive average pooling to
produce a 128-dimensional representation, followed by lin-
ear projection to 512-dimensional embeddings. The pro-
jected features are processed by a transformer block with
multi-head self-attention and layer normalization:

Fattn = LayerNorm(Fpmj + MHA(FPTD]‘, Fp’V‘Oj7 Fproj))
Firans = LayerNorm(Fattn + FFN(Fattn))

where MHA represents multi-head attention (8
heads) and FFN is a two-layer feed-forward network
(512—2048—512 dimensions) with GELU activation.
Finally, two parallel task-specific heads process the
transformed features:

3)

Fiask = ReLU(LayerNorm(Linears2 (Linear1024 ( Firans))))
h = Linear; (Fiasx)

w = Lineary1 (Fiask)

“)

where h represents plant height prediction (in cm) and w
represents growth stage classification logits using weekly
intervals (weeks 1-11). The architecture employs hard pa-
rameter sharing in the feature processing pipeline while
maintaining separate head weights, facilitating knowledge
transfer between related tasks [39].

Feature Activation Visualization. Figure 3 shows Grad-
CAM [40] activation maps from our aggregation layer for
AMAPA at week 10. The maps demonstrate task-specific
feature extraction. Segmentation shows uniform activation
across plant boundaries. This helps with accurate boundary
delineation. Height estimation focuses on plant extremities
and uppermost leaves. These regions correspond to vertical
measurements. Growth stage classification targets the cen-
tral stem and mature leaf regions. These areas contain vi-
sual features like stem thickness and leaf development that
indicate developmental progression through weekly inter-
vals. The distinct patterns confirm our multi-task architec-
ture learns complementary representations. There is no in-
terference between tasks. This enables high performance
across all tasks while sharing network parameters.

4. Experiments and Discussion

4.1. Implementation Details

All experiments are conducted using PyTorch on an In-
tel Xeon Gold 6240 CPU @ 2.60GHz system with 124
GB RAM and an NVIDIA Tesla V100S GPU with 32GB
memory. We evaluate our approach against six state-of-
the-art architectures adapted for multi-task learning: Seg-
Former [54], UNet [38], PoolFormer [57], BiSeNetV1 [55],
BiSeNetV2 [56], and SFNet [27]. For fair comparison, each
method uses its original encoder-decoder architecture for
semantic segmentation while incorporating our proposed
Temporal Growth Decoder (TGD) for height regression and
growth stage classification tasks. The model is trained using
a multi-task loss function that equally weights three compo-
nents: pixel-level weighted cross-entropy for segmentation
(including auxiliary supervision), Mean Squared Error for
height regression, and cross-entropy for growth stage clas-
sification. All models are trained for 50 epochs from scratch
without pre-trained weights. Training uses the Adam opti-
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Figure 4. Height estimation performance of WeedSense across the
full measurement range (0.2-155 cm). Predictions cluster tightly
along the perfect prediction line (y=x) with tolerance bands show-
ing +1cm (green), +2cm (blue), and +5cm (red) accuracy zones.
The error distribution (top left inset) is symmetric around zero with
no systematic bias, while the height distribution (bottom right in-
set) shows the diverse range of plant sizes in our dataset.

mizer with initial learning rate My = 2 X 107%, weight
decay of 0.0001, and cosine annealing schedule [30]. A
1,500-iteration linear warmup period gradually increases
the learning rate from 0.17pase tO Npase- Data augmentation
includes random cropping (50%-200% of original size),
horizontal flipping (50% probability), and ImageNet nor-
malization. Random cropping is applied to all training im-
ages, while horizontal flipping is applied probabilistically
to half the samples during each epoch. All images are re-
sized to 512 x 512 pixels with batch size 8 during training
and batch size 1 during evaluation.

4.2. Comparative Evaluation

We evaluate our proposed WeedSense against the multi-
task learning variants we created: MTL-SegFormer,
MTL-UNet, MTL-PoolFormer, MTL-BiSeNetV1, MTL-
BiSeNetV2, and MTL-SFNet. Tables 2 to 4 summarize re-
sults across segmentation quality, height estimation, growth
stage classification, and computational efficiency.

Segmentation Performance. As shown in Table 2, Weed-
Sense achieves the best segmentation performance with
89.78% mloU and 94.54% mF1 score. Among competitive
methods, WeedSense surpasses MTL-BiSeNetV2 by 0.49
and 0.28 percentage points respectively, outperforms MTL-
BiSeNetV1 by 2.53 percentage points, and exceeds MTL-
SFENet by 3.51 percentage points in mloU. WeedSense
achieves significant gains over lower-performing methods:
38.27 percentage points better than MTL-UNet, 33.61 per-
centage points better than MTL-SegFormer, and 17.33 per-
centage points better than MTL-PoolFormer. The qualita-
tive results in Fig. 5 further validate these findings, show-
ing that WeedSense provides more accurate boundary de-
lineation for AMATU, CYPES, ECHCG species with better

Small] Medium/ Large] Very Large|
Model 0-20cm 20-50cm 50-100cm >100cm
MTL-SegFormer 2.81 cm 7.50 cm 8.18 cm 11.29 cm
MTL-UNet 1.46 cm 3.03cm 3.10 cm 3.0l cm
MTL-Poolformer 2.23 cm 6.11 cm 7.10 cm 8.89 cm
MTL-BiSeNetV1 1.35 cm 2.60 cm 2.96 cm 2.74 cm
MTL-BiSeNetV2 1.20 cm 2.53 cm 2.32 cm 3.12cm
MTL-SFNet 2.12cm 5.64 cm 7.65 cm 10.22 cm
WeedSense 1.20 cm 2.28 cm 2.28 cm 2.60 cm

Table 3. Height estimation error (MAE) across different plant size
categories.

Model Params (M){, GFLOPsJ FPST
MTL-SegFormer 8.19 7.94 138
MTL-UNet 35.67 233.23 94
MTL-Poolformer 18.77 22.86 101
MTL-BiSeNetV1 17.31 13.30 249
MTL-BiSeNetV2 29.62 16.84 185
MTL-SFNet 18.62 30.77 151
WeedSense 30.50 16.73 160

Table 4. Computational efficiency comparison showing model
size, computational complexity, and inference speed.

precision for fine-grained plant structures.

Height Estimation Performance. Height regression
presents challenges due to the wide range of plant heights
from 0.2 to 155 cm and visual occlusions during flowering
stages. As detailed in Table 2, WeedSense achieves the best
overall performance with 1.67 cm MAE, 2.32 cm RMSE,
and 0.9941 R? value. Our approach achieves a maximum
error of 19.34 cm versus the best competitor’s 24.39 cm,
representing a 20.7% reduction. For tolerance rates, Weed-
Sense achieves 43.26% of predictions within 1 cm, 70.37%
within 2 c¢cm, and 95.49% within 5 cm. The 2 cm toler-
ance rate surpasses all competitors by 2.24-30.22 percent-
age points.

Table 3 reveals consistent performance across plant
sizes. For small plants (0-20 cm), WeedSense matches the
best performer at 1.20 cm error. For medium plants (20-
50 cm), our approach achieves 2.28 cm error, representing
a 9.9% improvement over the best competitor. For large
(50-100 cm) and very large plants (>100 cm), WeedSense
maintains 2.28 cm and 2.60 cm errors respectively, outper-
forming all other methods. Figure 4 visualizes predictions
clustering tightly along the identity line with consistent ac-
curacy across all height ranges.

Growth Stage Classification Performance. As shown
in Table 2, WeedSense achieves 99.99% accuracy and F1
score on growth stage classification. The top-performing
models achieve near-perfect results, with WeedSense rank-
ing among the best performers alongside MTL-BiSeNetV2
and MTL-BiSeNetV1. Performance differences among top
models are negligible for practical applications. The con-
sistently high classification performance across most archi-
tectures indicates that growth stage classification is more
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tractable than segmentation or height estimation, likely
due to distinctive visual patterns associated with different
growth stages.

Real-Time Performance Analysis. As shown in Table 4,
WeedSense achieves 160 FPS with 30.50M parameters and
16.73 GFLOPs, providing a balance between performance
and efficiency. While MTL-BiSeNetV1 offers the high-
est frame rate at 249 FPS and MTL-SegFormer requires
the fewest resources at 7.94 GFLOPs, WeedSense deliv-
ers competitive overall efficiency-performance trade-offs.
WeedSense runs 1.7x faster than MTL-UNet while requir-
ing 13.94x fewer computational resources and achieving
38.27 percentage points better segmentation mloU. Com-
pared to MTL-SFNet, our approach provides 1.84x com-
putational efficiency improvement while maintaining 3.51
percentage points better segmentation performance.

4.3. Ablation Studies

To validate our architectural design choices and determine
the optimal configuration for WeedSense, we conduct ex-
tensive ablation experiments. All experiments follow the
training protocol described in Sec. 4.1.

Kernel Configuration. We first analyze the effect of ker-
nel size configuration for UIB blocks, denoted as S[start]-
M[mid]-E[end]. Table 5 shows the performance results
across different configurations. The first thing to observe is
that the S5-M3-ES5 configuration achieves the highest seg-
mentation mloU at 89.53% but requires slightly more com-
putational resources. The SO-M3-EO configuration main-
tains competitive performance while offering the lowest
computational cost. For height estimation, the SO-M3-ES
configuration achieves the lowest MAE at 1.64cm, while
S1-M3-EQ0 provides competitive performance at 1.65cm.

Interestingly, all configurations achieve near-perfect growth
stage classification accuracy. From these results, we se-
lect the SO-M3-EQ configuration as it provides the optimal
efficiency-performance trade-off.

Squeeze-and-Excitation Module Effects. Building upon
the SO-M3-EO configuration, we analyze the impact of
squeeze-and-excitation (SE) modules. As shown in Table 5,
incorporating SE modules increase segmentation mloU by
0.94 percentage points and reduces height estimation error
by 0.07 cm. This performance gain comes at the cost of
only 1.08M additional parameters with no change in com-
putational complexity. From these results, we can conclude
that adaptive channel recalibration improves feature quality
with minimal computational overhead.

Channel Capacity. We now analyze the effect of channel
capacity in the aggregation layer and SE modules on model
performance. Table 5 shows performance across different
configurations. The first thing to observe is that adding
SE modules universally improves performance regardless
of channel dimensions. When comparing configurations,
the 256-channel with SE achieves better height estimation
but similar segmentation performance compared to the 128-
channel variant, yet requires 45.3% more computation. For
segmentation, performance increases as channel capacity
increases up to 128-channels, then plateaus with minimal
gains at 256-channels. For height estimation, performance
continues to improve with wider channels. The 64-channel
variants show substantial performance degradation despite
their efficiency advantages. From these results, we select
the 128-channel with SE configuration as it offers the best
balance between accuracy and efficiency for deployment.
Auxiliary Supervision. Table 5 shows the results with and
without auxiliary heads. Removing auxiliary heads reduces



Seg.t Heightl  Week?

Config. mloU (%) MAE (cm) Acc (%) | Params (M)}, GFLOPs),
UIB Kernel Configuration

SO-M3-E0 | 8884 174 10000 | 2942 16.73

SI-M3-E0 | 88381 165 10000 | 2943 16.74

SO-M3-El | 89.43 167 10000 | 29.43 1674

SI-M3-El | 89.49 175 99.98 29.43 16.74

S5-M3-E0 | 89.41 167 99.99 29.44 16.75

SO-M3-ES | 89.17 164 9991 2944 16.75

S5-M3-E5 | 89.53 170 99.96 2946 16.77

Squeeze-and-excitation Module

No SE 88.84 1.74 100.00 29.42 16.73
With SE 89.78 1.67 99.99 30.50 16.73

Channel Capacity Configuration

C64-NoSE 86.50 2.28 99.87 28.45 13.70
C64-SE 87.31 2.00 99.99 29.53 13.70
C128-NoSE 88.84 1.74 100.00 29.42 16.73
C128-SE 89.78 1.67 99.99 30.50 16.73
C256-NoSE 89.37 1.52 100.00 32.13 24.31
C256-SE 89.70 1.52 100.00 33.21 2431

Auxiliary Supervision Configuration

No Aux 87.48 2.05 98.70 9.62 16.73
Aux S1-4 89.78 1.67 99.99 30.50 16.73
Model Size Configuration

Small 77.17 2.66 99.69 21.50 3.56
Medium 89.78 1.67 99.99 30.50 16.73
Large 91.41 1.41 99.78 45.36 34.55
Task Configuration

Single Task 93.67 1.53 99.55

Multi Task 89.78 1.67 99.99 -

Table 5. Comprehensive ablation analysis of WeedSense design
components. Results demonstrate the progressive refinement from
baseline SO-M3-EO kernel configuration through the addition of
squeeze-and-excitation modules, optimal channel capacity selec-
tion, auxiliary supervision, and model size scaling. The final com-
parison shows trade-offs between single-task and multi-task learn-
ing approaches.

segmentation mloU by 2.30 percentage points and increases
height estimation error by 22.75%. Growth stage classifi-
cation accuracy also drops from 99.99% to 98.70%. As de-
scribed in Sec. 3.1, these auxiliary components are training-
only and incur zero computational overhead during infer-
ence.

Model Size Scaling. We implement three model variants
that systematically scale key architectural components to
analyze capacity-performance trade-offs. Table 6 details the
scaling strategy across both encoder branches and decoder
components. As shown in Table 5, performance increases
predictably with model size. The Large variant improves
segmentation mloU by 1.63 percentage points and reduces
height MAE by 0.26 cm compared to Medium. However,
these gains come at the cost of significantly increased com-
putational requirements. In contrast, the Small variant of-
fers substantially lower computational cost but with sub-
stantial accuracy degradation compared to Medium. From
these results, we conclude that the Medium variant provides
the optimal compromise for practical deployment.

Single vs. Multitask. We compare our multitask ap-

Component Small Medium Large
Detail Branch Channels 32-32-64 64-64-128 96-96-192
Semantic Branch Channels ~ 8-16-32-64 16-32-64-128  24-48-96-192
UIB Blocks per Stage 1-1-2 2-2-4 3-3-6
Expansion Ratio 4 6 6
Transformer Embed Dim 256 (4 heads) 512 (8 heads) 768 (12 heads)
Task Head Dimensions 512—256 1024—512 1536—768

Table 6. Model size variant configurations. Branch channels corre-
spond to stages S1-S2-S3 (Detail) and stem-S3-S4-S5 (Semantic).
UIB blocks are distributed across S3-S4-S5 stages.

proach against dedicated single-task models using the
same Medium-variant architecture. Table 5 shows that
while single-task models achieve 3.89% better segmenta-
tion mloU and 0.14 cm lower height MAE, our multitask
model provides substantial computational advantages. In-
dividual single-task models require 45.14M total parame-
ters (segmentation: 30.50M, week: 7.32M, height: 7.32M)
compared to our multitask model’s 30.50M parameters, rep-
resenting a 32.4% parameter reduction. For inference effi-
ciency, sequential execution of single-task models achieves
only 52.3 FPS, while parallel execution reaches 157.84 FPS
but requires significantly more resources. Our unified ap-
proach achieves 160 FPS with a single model, outperform-
ing even parallel single-task execution while using substan-
tially fewer resources, demonstrating an optimal balance
between performance and efficiency for practical deploy-
ment.

5. Conclusion

In this study, we proposed WeedSense, a novel multi-task
learning architecture for comprehensive weed analysis that
simultaneously performs semantic segmentation, height es-
timation, and growth stage classification using RGB im-
agery. We also introduced a novel dataset capturing 16
weed species over an 11-week growth cycle with pixel-
level annotations, height measurements, and weekly growth
stage labels to evaluate the model’s performance across di-
verse growth patterns and species characteristics. Exper-
imental evaluation demonstrated that WeedSense outper-
forms state-of-the-art models across key performance met-
rics including segmentation accuracy, height estimation pre-
cision, and growth stage classification using weekly in-
tervals. Our unified multitask approach achieves compu-
tational efficiency gains, requiring 32.4% fewer parame-
ters than separate single-task models while maintaining 160
FPS inference speed compared to 52.3 FPS for sequential
single-task execution. Future research could explore the
integration of WeedSense with morphology-based BBCH
growth stage classification, field-based data collection to
validate performance in real agricultural environments, and
crop-weed discrimination tasks to enhance its adaptability
in diverse agricultural environments while investigating its
robustness across different lighting conditions and weather
scenarios.
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