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Abstract

Livestock methane emissions represent 32% of human-
caused methane production, making automated monitor-
ing critical for climate mitigation strategies. We intro-
duce GasTwinFormer, a hybrid vision transformer for real-
time methane emission segmentation and dietary classifica-
tion in optical gas imaging through a novel Mix Twin en-
coder alternating between spatially-reduced global atten-
tion and locally-grouped attention mechanisms. Our ar-
chitecture incorporates a lightweight LR-ASPP decoder for
multi-scale feature aggregation and enables simultaneous
methane segmentation and dietary classification in a unified
framework. We contribute the first comprehensive beef cat-
tle methane emission dataset using OGI, containing 11,694
annotated frames across three dietary treatments. GasT-
winFormer achieves 74.47% mIoU and 83.63% mF1 for
segmentation while maintaining exceptional efficiency with
only 3.348M parameters, 3.428G FLOPs, and 114.9 FPS
inference speed. Additionally, our method achieves perfect
dietary classification accuracy (100%), demonstrating the
effectiveness of leveraging diet-emission correlations. Ex-
tensive ablation studies validate each architectural compo-
nent, establishing GasTwinFormer as a practical solution
for real-time livestock emission monitoring. Please see our
project page at gastwinformer.github.io.

1. Introduction
Methane (CH4) represents a potent greenhouse gas with a
global warming potential 84 times greater than carbon diox-
ide over a 20-year timeframe [14]. Agriculture accounts for
40% of human-caused methane emissions, with livestock
responsible for roughly 32% [21]. As global food demand
is expected to increase by 70% by 2050, developing effi-
cient monitoring systems for livestock methane emissions
has become critical for climate mitigation [20].

The relationship between livestock diet composition
and methane production creates opportunities for inte-
grated monitoring systems. Different feed regimens signif-

icantly influence emission patterns—high-forage diets typ-
ically increase methane production due to fiber fermenta-
tion, while grain-rich diets can reduce emissions [4]. Ad-
vanced monitoring technologies enable precise quantifica-
tion of these emission patterns, creating opportunities for
data-driven livestock management through real-time assess-
ment of feeding strategies and emission mitigation interven-
tions [13].

Traditional methane quantification methods rely on res-
piration chambers or emission factor calculations, which
suffer from high costs, labor-intensive protocols, and inabil-
ity to capture real-time dynamics [22]. Recent advances
in optical gas imaging (OGI) offer non-invasive, contin-
uous monitoring capabilities using thermal infrared cam-
eras operating in the 7-8.5 µm spectral range [25, 27].
However, OGI presents computational challenges including
low signal-to-noise ratios, complex thermal backgrounds,
and irregular plume morphology requiring automated anal-
ysis [7].

Vision transformers have revolutionized dense predic-
tion tasks through global context modeling, but face com-
putational challenges with high-resolution OGI data due to
quadratic attention complexity [9]. Recent hybrid attention
mechanisms show promise for balancing efficiency with
representational capacity, but have not been adapted for gas
plume segmentation [6, 8, 31].

We propose a novel architecture called GasTwinFormer
for semantic segmentation of methane emissions and di-
etary treatment classification in beef cattle OGI camera im-
ages. In the encoding stage, we develop a Mix Twin encoder
that combines efficient multi-head attention (EMA) [30]
with locally-grouped self-attention (LSA) [2] to capture
both global context and local details for precise gas plume
detection. This dual attention approach enables effective
processing of thermal infrared imagery while maintaining
computational efficiency. In the decoding stage, we use a
hierarchical LR-ASPP decoder [5] that processes features
from multiple encoder stages to generate accurate segmen-
tation predictions. Our framework performs both pixel-
wise methane segmentation and dietary classification using
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Figure 1. GasTwinFormer architecture. The Mix Twin encoder uses alternating EMA and LSA blocks across four hierarchical stages. The
LR-ASPP decoder performs methane segmentation while a separate classification head predicts dietary treatment.

shared features. The main contributions of this study are as
follows:
1. GasTwinFormer, a hybrid transformer-based architec-

ture that enables concurrent methane plume segmen-
tation and dietary treatment classification in livestock
monitoring applications.

2. A comprehensive beef cattle methane emission dataset
captured through OGI technology, comprising 11,694
semi-automatically annotated frames spanning three
feeding regimens.

3. Extensive benchmarking and performance analy-
sis against existing state-of-the-art segmentation
approaches, demonstrating superior accuracy and
computational efficiency across multiple metrics.

2. Related Work

Optical Gas Imaging and Methane Detection. Wang
et al. [25] pioneered computer vision for methane detec-
tion using infrared cameras, developing GasNet with 95%
detection accuracy on ∼1M labeled frames. VideoGas-
Net [26] extended this work to leak size classification us-
ing 3D CNNs. Recent advances include vision transform-
ers for satellite methane detection [18] and CNNs for air-
borne emission quantification [7]. Most recently, Sarker et
al. [19] introduced Gasformer, achieving 88.56% mIoU on
livestock datasets using Mix Vision Transformer encoders.
However, existing approaches lack systematic integration
of global and local attention for enhanced boundary delin-
eation in challenging thermal imagery.
Vision Transformers for Dense Prediction. Dosovitskiy
et al. [3] established Vision Transformers for image clas-

sification, while Ranftl et al. [17] introduced Dense Vision
Transformers for dense prediction tasks. Hierarchical de-
signs have proven effective: Swin Transformer [10] uses
shifted windowing for computational efficiency, PVT [28]
establishes hierarchical principles through progressive spa-
tial reduction, and SegFormer [30] achieves state-of-the-art
performance (51.8% mIoU on ADE20K) through efficient
MLP decoders and Mix Vision Transformers with spatial
inductive bias.
Hybrid Attention Mechanisms. Chu et al. [2] proposed
Twins architectures (PCPVT and SVT) that systematically
combine different attention mechanisms. Twins introduces
Locally-Grouped Self-Attention (LSA) partitioning spatial
dimensions into non-overlapping windows for linear com-
plexity, while maintaining local pattern recognition. Yang
et al. [31] demonstrated that treating global and local atten-
tion as complementary achieves superior dense prediction
performance. However, existing hybrid approaches focus
on natural images and have not been adapted for gas plume
segmentation challenges.
Research Gaps. Despite advances in methane detection
and vision transformers, three critical limitations hinder
practical OGI-based livestock monitoring. Current lim-
itations in OGI-based livestock monitoring include: (1)
reliance on single-scale attention mechanisms that inad-
equately balance global context and local precision for
gas plume characteristics, (2) treatment of methane de-
tection as an isolated task without leveraging established
diet-emission correlations, and (3) absence of comprehen-
sive livestock-specific datasets capturing real-world farm-
ing complexities beyond controlled laboratory conditions.
Our GasTwinFormer addresses these limitations through
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hybrid attention design, multi-task learning integration, and
comprehensive dataset development.

3. Method
GasTwinFormer consists of three primary components: (1)
a hierarchical Mix Twin encoder that combines efficient
multi-head self-attention (EMA) from SegFormer’s Mix
Transformer [30] with locally-grouped self-attention (LSA)
from Twins [2], (2) a hierarchical lightweight reduced
Atrous Spatial Pyramid Pooling decoder (LR-ASPP) [5] for
multi-scale feature aggregation and pixel-wise methane seg-
mentation, and (3) a dietary classification head for scene-
level prediction. Figure 1 illustrates the complete architec-
ture pipeline.

3.1. Mix Twin Encoder
Hybrid Attention Architecture. The backbone encoder
follows a hierarchical design with four stages that progres-
sively reduce spatial resolution from H/4 to H/32 while
expanding channel capacity from 32 to 256. Within each
stage, we use an EMA→LSA composition: an EMA block
establishes global relationships via spatially reduced atten-
tion, followed by an LSA block that refines local structure
using 5× 5 windows. Each stage therefore contains exactly
one EMA–LSA pair (EL). SegFormer uses only efficient
(EMA) attention in every block. Twins–PCPVT uses only
global sub-sampled attention (GSA). Twins–SVT places
LSA first and GSA second in a repeating LSA→GSA se-
quence. Accordingly, composing EL within each stage cap-
tures long-range plume context via EMA and sharp bound-
ary details via LSA in a single pass, yielding higher ac-
curacy than EMA-only (SegFormer), GSA-only (Twins–
PCPVT), or LSA→GSA alternation (Twins–SVT); quanti-
tative gains are reported in Tab. 2.
Hierarchical Multi-Scale Feature Extraction. Given an
input image I ∈ RH×W×3, the encoder generates multi-
scale feature representations {F1, F2, F3, F4} with progres-
sive spatial downsampling and corresponding channel di-
mensions {32, 64, 160, 256}, respectively. The EMA-LSA
pairs in each stage incorporate overlapped patch embedding
and layer normalization, resulting in 8 total blocks across
the four-stage encoder.
Overlapped Patch Embedding. We use overlapped patch
embedding to preserve spatial continuity for precise bound-
ary localization. The first stage uses a 7 × 7 convolution
with stride 4 and padding 3, while subsequent stages use
3× 3 convolutions with stride 2 and padding 1 for efficient
downsampling.
Efficient Multi-Head Attention. Standard multi-head self-
attention mechanisms exhibit quadratic computational com-
plexity O(N2) with respect to spatial resolution N = H ×
W, creating computational bottlenecks for high-resolution
dense prediction tasks. We address this limitation by adopt-

ing the Efficient Multi-Head Attention (EMA) from Seg-
Former [30], which builds upon the spatial reduction pro-
cess introduced in Pyramid Vision Transformer [30]. This
approach reduces complexity to O(N2/R) through spatial
reduction of key and value representations while maintain-
ing full-resolution queries. For each stage i with reduction
ratio Ri, both key and value matrices are spatially down-
sampled to dimensions R(N/Ri)×C using convolutions with
kernel size and stride equal to Ri. The attention computa-
tion becomes:

Attention(Q,K′,V′) = Softmax
(
Q(K′)T
√
dhead

)
V′ (1)

where K′ and V′ are the spatially reduced key and value
representations with dimensions R(N/Ri)×C .

We use stage-adaptive reduction ratios R = {8, 4, 2, 1}
that align with the hierarchical nature of feature learning.
Early stages utilize aggressive reduction (R = 8) to handle
high-resolution features efficiently, while later stages pro-
gressively decrease reduction ratios as spatial dimensions
naturally diminish through downsampling. This strategy
ensures computational tractability in high-resolution stages
while maintaining fine-grained attention capabilities in se-
mantically rich later stages.
Locally-Grouped Self-Attention. While EMA achieves
computational efficiency through spatial reduction, it may
compromise fine-grained spatial detail preservation that is
critical for accurate boundary delineation in methane plume
segmentation. To address this limitation, we integrate LSA
from Twins-SVT [2] as the second component in our hy-
brid attention pattern. LSA complements the global context
modeling of efficient attention by capturing fine-grained lo-
cal structures through spatially partitioned attention compu-
tation.

The LSA addresses the quadratic complexity challenge
through spatial partitioning rather than spatial reduction.
Given an input feature map X ∈ RB×N×C where N =
H × W , LSA partitions the spatial dimensions into non-
overlapping windows of size w1×w2. Self-attention is then
computed independently within each local window:

LSA(X) = Concati,j (Attention(Xi,j)) (2)

where Xi,j ∈ RB×w1w2×C represents the feature tokens
within window (i, j), and the concatenation operates over
all ⌈H/w1⌉×⌈W/w2⌉ windows. The attention computation
within each window follows the standard formulation:

Attention(Xi,j) = Softmax

(
Qi,jK

T
i,j√

dhead

)
Vi,j (3)

This design achieves computational complexity of
O(w1w2HWd), which scales linearly with spatial resolu-
tion since the window size w1w2 remains fixed. For our
implementation with w1 = w2 = 5, the complexity be-
comes O(25HWd), providing substantial efficiency gains
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while maintaining sufficient receptive field coverage for lo-
cal pattern recognition.
Mix Feed-Forward Network. Both Transformer Block
and LSA Block utilize the Mix Feed-Forward Network
(Mix-FFN) module from SegFormer [30], which eliminates
the need for explicit positional encodings while providing
spatial inductive bias. Unlike Vision Transformers that use
fixed-resolution positional encodings, we argue that posi-
tional encoding is not necessary for dense prediction tasks.
Instead, Mix-FFN considers the effect of zero padding to
leak location information by directly incorporating a 3 × 3
convolution in the feed-forward network. The Mix-FFN op-
eration is formulated as:

Mix-FFN(x) = MLP(GELU(Conv3×3(MLP(x)))) + x (4)

where x is the feature from the self-attention module.
Mix-FFN mixes a 3 × 3 convolution and MLPs into each
feed-forward network. The 3 × 3 convolution is sufficient
to provide positional information for transformers through
the spatial connectivity and zero-padding effects. We use
depth-wise convolutions to reduce the number of parame-
ters and improve computational efficiency.

3.2. Hierarchical LR-ASPP Decoder
For dense prediction tasks, we use a lightweight decoder
that efficiently aggregates multi-scale features from our hi-
erarchical encoder. Building upon LR-ASPP from Mo-
bileNetV3 [5], we propose an adaptive variant that accom-
modates variable input resolutions while maintaining com-
putational efficiency. Our Hierarchical LR-ASPP decoder
processes multi-scale features {F1, F2, F3, F4} through two
parallel pathways: F4 features are processed through the
main ASPP path, while F1, F2, F3 features are processed
through dedicated 1×1 convolution branches. The opera-
tions are:

Fpool = Sigmoid(Conv1×1(AdaptiveAvgPool(F4)))

Faspp = Conv1×1(F4)⊙ Upsample(Fpool)

Fbranchi = Conv1×1(Fi), i ∈ {1, 2, 3}
Fout = ProgressiveFusion(Faspp, {Fbranch3 , Fbranch2 , Fbranch1})

(5)

where ⊙ denotes element-wise multiplication, and pro-
gressive fusion sequentially upsamples, concatenates, and
fuses features from deeper to shallower levels. This design
preserves both semantic information from deep features and
spatial details from shallow features essential for accurate
methane plume boundary delineation.

3.3. Dietary Classification Head
To enable simultaneous scene-level classification alongside
dense plume segmentation, we incorporate a lightweight
classification head that processes the highest-level semantic
features from the encoder. The classification head employs

a simple yet effective architecture consisting of adaptive av-
erage pooling, followed by a two-layer fully connected net-
work with ReLU activation and dropout regularization. The
classification head operates on the final stage features F4

to predict dietary treatment categories: High Forage (HF),
Mixed Diet (MD), and High Grain (HG).

3.4. Gaussian Plume Weighted Dice Loss
We incorporate the Gaussian Plume Weighted Dice
Loss [36] to leverage physical constraints from gas disper-
sion behavior in our segmentation framework. This loss
function addresses the inherent characteristics of gas plume
dynamics by applying spatially-varying weights based on
the Gaussian plume model. The loss formulation applies
pixel-wise weights according to the Gaussian distribution:

w(p) = exp

(
−
(px − µx)2

2σ2
x

−
(py − µy)2

2σ2
y

)
(6)

where p = (px, py) denotes pixel coordinates, (µx, µy)
represents the plume center computed via center-of-mass
on predicted masks, and (σx, σy) denote the horizontal and
vertical diffusion scales estimated through weighted stan-
dard deviation with adaptive bounds [W20 ,

W
2 ] and [H20 ,

H
2 ]

respectively, where W and H are the image dimensions.
The weighted Dice loss is then computed as:

Lweighted = 1−
2
∑

p w(p) · yp · ŷp + ϵ∑
p w(p) · yp +

∑
p w(p) · ŷp + ϵ

(7)

where yp and ŷp represent the ground truth and predicted
segmentation values at pixel p, and ϵ is a small constant for
numerical stability.

4. Beef Cattle Methane Emission Dataset
We present a comprehensive dataset for methane emission
detection from beef cattle, captured using this OGI cam-
era. This dataset addresses the critical need for computer
vision benchmarks in livestock emission monitoring, par-
ticularly for developing and evaluating segmentation algo-
rithms under challenging real-world conditions. We use the
FLIR Gx320 OGI camera for methane emission detection.
The camera operates in the 3.2–3.4 µm spectral range, opti-
mized for hydrocarbon detection through mid-wave infrared
sensing. Key specifications include 320×240 pixel resolu-
tion and <10 mK thermal sensitivity. The camera detects
methane concentrations as low as 9.6 ppm·m under optimal
conditions with 10◦C thermal contrast [23].
In Vivo Trial Design. The primary aim of this in vivo trial
was to assess the efficacy of combining optical gas imag-
ing with deep learning to detect and segment methane emis-
sions from ruminant animals across different dietary treat-
ments. The study utilized twelve postpartum beef cows
(1200 lb ± 23) over a 30-day period, with 4 animals as-
signed to one of three dietary treatment groups. Each group
was housed and fed together in separate feed stalls, receiv-
ing 30 lb of diet mix per cow daily. All cows received
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Diet Type Images Percentage Videos Train
(70%)

Val
(15%)

Test
(15%)

High Forage 2,730 23.4% 10 1,906 404 420
Mixed Diet 4,658 39.8% 5 3,258 696 704
High Grain 4,306 36.8% 4 3,013 644 649

Total 11,694 100.0% 19 8,177 1,744 1,773

Table 1. Beef cattle methane emission dataset statistics. Percent-
ages show distribution within 11,694 annotated frames.

feed twice daily at 7 AM and 7 PM, where hay was of-
fered first, followed by the grain mix. All animals had
free access to clean water and were housed at Southern Illi-
nois University’s beef center barns, managed in accordance
with Institutional Animal Care and Use Committee guide-
lines (protocol number 22-016) [12]. We conducted con-
trolled experiments across three dietary treatment groups to
investigate the relationship between feed composition and
methane emissions: High Forage Group (HF) fed 100%
hay consisting of grass and legume mix; Mixed Diet Group
(MD) fed 50% hay mix and 50% grain mix (67.5% corn,
25% DDGS, and 7.5% mineral mix); and High Grain Group
(HG) fed 20% hay mix and 80% grain mix, with grain levels
increased gradually to prevent acidosis and facilitate adap-
tation to the high-grain diet. Every cow was kept in an
animal chute for 20 minutes for gas recording, and at the
end of the experiment, all cows were moved to the holding
barn two hours after morning feeding. The gas imaging was
performed using the TELEDYNE FLIR Gx320, with the in-
frared camera mounted in a lateral position approximately 4
feet from the cow’s head. Following recording, cows were
returned to their assigned barn. The same recording pro-
cedure was repeated the next day to collect additional data
required for model training.
Image Acquisition. Videos were captured in black-hot
thermal mode (dark gas plumes against light backgrounds)
in FLIR’s CSQ format with 14-bit radiometric data. We
converted CSQ files to MP4 using FLIR Thermal Studio,
then extracted frames as 8-bit grayscale PNG images (0-255
intensity values with three identical channels).
Dataset Statistics and Composition. Our dataset com-
prises 208,149 frames extracted at 30 fps from 19 FLIR
thermal recordings across dietary treatment groups. Each
frame has 640×480 pixel resolution and is stored as 8-
bit grayscale PNG files with values ranging 0-255. We
identified and annotated 11,694 frames (5.6% of 208,149
frames) containing visible methane plumes, reflecting the
intermittent nature of bovine eructation events. As shown in
Tab. 1, the annotated frames are distributed across dietary
treatments as: 4,658 mixed diet (39.8%), 4,306 high grain
(36.8%), and 2,730 high forage (23.4%) frames. This distri-
bution reflects both biological emission differences and col-
lection constraints across treatments. For model develop-
ment, we employed temporal splitting to preserve emission
sequence integrity: 70% of consecutive frames for training,

15% for validation, and 15% for testing within each video.
Table 1 details the resulting splits: 8,177 training frames,
1,744 validation frames, and 1,773 test frames. This ensures
evaluation on future time points relative to training data,
providing realistic generalization assessment. All 19 videos
contribute to each split while maintaining dietary treatment
proportions. We excluded the remaining ∼196k non-plume
frames to avoid severe class imbalance without meaningful
segmentation training signal.
Annotation Methodology. We developed a multi-stage
annotation pipeline combining classical image processing,
deep learning, and manual refinement to generate reliable
ground truth masks for ephemeral methane plumes with
low contrast and irregular morphology. Our pipeline con-
sists of three complementary approaches: (1) Classical pro-
cessing employs temporal background subtraction using ex-
ponential moving average over 5 frames, followed by mo-
tion masking (thresholds 20-60), adaptive mean threshold-
ing (block sizes 300-5001, constants 5-15), watershed seg-
mentation with Sobel edge detection, and morphological re-
finement with size filtering (>2000 pixels) and eccentricity
filtering (>0.95) to remove linear artifacts. (2) Deep learn-
ing processing uses a Gasformer [19] model trained on ini-
tial classical masks to identify subtle patterns beyond tradi-
tional methods. (3) Enhanced processing applies CLAHE,
intensity rescaling, and non-local means denoising (h = 15)
for improved candidate generation. For each frame, we gen-
erate three mask candidates from these approaches and per-
form manual inspection to select the most accurate repre-
sentation using contrast-enhanced overlays. Figure 2 (sec-
ond column) shows the resulting ground truth masks for all
three dietary treatments.

5. Results
5.1. Implementation Details
We implement all experiments using PyTorch and MM-
Segmentation framework on a server with Intel Xeon
Gold 6338 (2.00GHz), NVIDIA A100 80GB GPU, and
512GB RAM. We evaluate GasTwinFormer against com-
prehensive baselines spanning transformer-based architec-
tures (SegFormer [30], Twins PCPVT-S [2], Twins SVT-
S [2], Gasformer [19], iFormer [35]) and CNN-based meth-
ods (DeepLabV3 [1], BiSeNetV1 [32], Fast-FCNN [16],
ICNet [34], UperNet [29], BiSeNetV2 [33], DDRNet [15],
RepViT [24]), with all models utilizing ImageNet pre-
trained weights where available. For the main results,
GasTwinFormer uses the EL-EL-EL-EL hybrid attention
pattern with 5×5 LSA window size and Gaussian Plume
Weighted Dice Loss, as determined optimal through abla-
tion studies in Sec. 5.3. Training proceeds for 80,000 it-
erations using AdamW optimizer (learning rate 6 × 10−5,
β1 = 0.9, β2 = 0.999, weight decay 0.01) with lin-
ear warmup from 10−6 over 1,500 iterations followed by
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Method Backbone mIoU
(%)↑

mF1
(%)↑

Diet Acc
(%)↑

Diet F1
(%)↑

Params
(M)↓

FLOPs
(G)↓

FPS
↑ Year

Transformer-based Methods

SegFormer [30] MiT-B0 72.11 81.57 100.0 100.0 3.782 7.885 119.66 2021
Twins [2] PCPVT-S 74.05 83.25 100.0 100.0 27.906 44.34 61.60 2021
Twins [2] SVT-S 72.06 81.62 100.0 100.0 27.846 38.471 51.64 2021
GasFormer [19] MiT-B0 72.25 81.69 100.0 100.0 3.716 9.913 102.29 2024
iFormer [35] iFormer-T 65.99 75.87 99.77 99.80 6.804 24.267 113.83 2025

CNN-based Methods

DeepLabV3 [1] ResNet-50 70.36 80.03 100.0 100.0 68.625 270.0 91.79 2017
BiSeNetV1 [32] ResNet-18 52.87 59.29 95.32 95.76 13.455 14.821 243.07 2018
Fast-FCNN [16] FastSCNN 54.01 61.09 97.01 96.95 1.488 0.927 225.79 2019
ICNet [34] ResNet-50 63.40 73.04 100.0 100.0 47.859 15.426 138.55 2018
UperNet [29] ResNet-50 70.67 80.32 100.0 100.0 66.927 237.0 85.06 2018
BiSeNetV2 [33] BiSeNetV2 66.53 76.32 98.08 98.28 14.821 12.286 172.48 2021
DDRNet [15] DDRNet 68.91 78.65 99.94 99.94 5.766 4.56 156.38 2022
RepViT [24] RepViT-M0.9 68.03 77.93 100.0 100.0 8.954 25.404 84.30 2024

GasTwinFormer MixTwinEncoder 74.47 83.63 100.0 100.0 3.348 3.428 114.9 2025

Table 2. Comparison with state-of-the-art methods on our beef cattle methane emission dataset. ↑ indicates higher is better, ↓ indicates
lower is better. Bold indicates better

polynomial decay (power=1.0). For GasTwinFormer, we
initialize compatible components (patch embeddings, ef-
ficient attention, feed-forward networks) from SegFormer
pre-trained weights while LSA layers are randomly initial-
ized due to architectural novelty, using 10× learning rate
scaling for the decoder head and zero weight decay for nor-
malization layers. Input images are resized to 512 × 512
pixels with data augmentation including random horizontal
flipping (50% probability) and photometric distortion, using
batch size 8 for training, and batch size 1 for inference. The
multi-task pipeline handles simultaneous segmentation and
classification annotations with validation every 8,000 iter-
ations, retaining the top 3 checkpoints based on mean IoU
performance. We report segmentation performance using
mean Intersection over Union (mIoU) and mean F1-score
(mF1), classification performance using accuracy and F1-
score, and computational efficiency via parameters, FLOPs,
and inference speed (FPS), with all metrics computed on the
test set using the best validation checkpoint.

5.2. Comparison with state-of-the-arts

We evaluate GasTwinFormer against transformer-based and
CNN-based methods on our beef cattle methane emission
dataset. Table 2 summarizes performance metrics for seg-
mentation and dietary classification tasks.
Segmentation Performance Analysis. GasTwinFormer
achieves 74.47% mIoU and 83.63% mF1 using only
3.348M parameters and 3.428G FLOPs, outperforming all
other approaches in terms of accuracy while maintaining ex-
ceptional efficiency. For instance, compared to Gasformer,
GasTwinFormer delivers 2.22% better mIoU while requir-
ing 9.9% fewer parameters and 65.4% fewer FLOPs. Com-
pared to SegFormer, GasTwinFormer achieves 2.36% better
mIoU and 2.06% better mF1 while requiring 11.5% fewer
parameters and 56.5% fewer FLOPs. Moreover, GasT-
winFormer outperforms all transformer-based approaches,

including Twins PCPVT-s, achieving 0.42% better mIoU
while being significantly more efficient with 8.3× fewer
parameters and 12.9× fewer FLOPs. Compared to heavy-
weight CNN methods, our results demonstrate substantial
superiority. Our method represents a 3.8% improvement
over UperNet and a 4.11% improvement over DeepLabV3,
while requiring 20× fewer parameters and running 69–78×
more efficiently in terms of FLOPs. Among efficient ap-
proaches, GasTwinFormer significantly outperforms Fast-
FCNN by 20.46% mIoU and DDRNet by 5.56% mIoU.

GasTwinFormer delivers exceptional inference speed of
114.9 FPS, enabling real-time processing for practical live-
stock monitoring applications. Our method runs 1.87×
faster than Twins PCPVT-s and 2.23× faster than Twins
SVT-s, while also outperforming RepViT (1.36× faster),
UperNet (1.35× faster), and DeepLabV3 (1.25× faster).
Notably, while SegFormer achieves slightly higher FPS
(119.66), GasTwinFormer delivers superior accuracy with
2.36% better mIoU. Compared to efficient CNN architec-
tures, our method maintains competitive speed while de-
livering substantially better accuracy: it runs 2.11× slower
than BiSeNetV1 but achieves 21.6% better mIoU.
Dietary Classification Performance. GasTwinFormer
achieves perfect dietary classification accuracy of 100%
across all test samples, matching the performance of several
state-of-the-art methods including Gasformer, SegFormer,
and Twins variants. This demonstrates that our architectural
design preserves multi-task learning capability while opti-
mizing segmentation performance. Compared to methods
with degraded classification performance, GasTwinFormer
outperforms Fast-FCNN by 2.99%, BiSeNetV1 by 4.68%,
and BiSeNetV2 by 1.92%, confirming the effectiveness of
our Stage 4 feature extraction strategy for capturing dietary-
specific emission patterns.
Qualitative Comparison. Figure 2 demonstrates dis-
tinct performance patterns across methods and dietary treat-
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Figure 2. Qualitative comparison of methane plume segmentation results across different models and dietary treatments (MD: mixed diet,
HG: high grain, HF: high forage), with ground truth masks shown for reference.

ments. CNN-based BiSeNetV2 consistently produces frag-
mented predictions with noise artifacts. Transformer meth-
ods (GasFormer, SegFormer, Twins PCPVT-S) generate
false positives, predicting gas emissions in regions where
ground truth shows none, particularly evident in the MD
scenarios, while suffering incomplete coverage in HG and
HF treatments, with additional over-segmentation in HF
cases. GasTwinFormer maintains accurate delineation in
MD, comprehensive coverage in both HG and HF cases de-
spite minor over-segmentation in the latter case.

5.3. Ablation Studies
We evaluate each component of our GasTwinFormer archi-
tecture to validate design decisions. Unless specified, all
ablations use 7×7 LSA windows, Mix-FFN, LRASPP de-
coder with F1+F2+F3 branch features, F4 for classification
head input, Cross Entropy loss for both tasks, 128 internal
decoder channels for segmentation, 256 hidden channels for
classification, and LE attention pattern per stage.
Decoder head architecture comparison. We evaluate five
different decoder heads to determine the best architecture
for methane segmentation. Each decoder is configured with
its standard design parameters reported in literature while
maintaining consistent backbone features. As shown in
Tab. 3, the LR-ASPP decoder achieves the best performance
at 73.65% mIoU while maintaining optimal efficiency. Al-
though ISA [6] and ANN [37] heads require significantly
more parameters, they deliver inferior performance, vali-
dating our lightweight design approach.
Mix-FFN vs. Regular FFN. We compare Mix-FFN against
standard feed-forward networks within LSA blocks. Ta-
ble 3 demonstrates that Mix-FFN substantially outperforms
regular FFN, achieving a 1.58 percentage point improve-
ment. Mix-FFN incorporates spatial inductive bias through
3 × 3 depth-wise convolutions, crucial for capturing local
spatial relationships without explicit positional encodings.
LR-ASPP Multi-scale feature fusion evaluation. We sys-

tematically evaluate different encoder feature combinations
for the branch pathway of our Adaptive LR-ASPP decoder.
We test all possible combinations of F1, F2, and F3 fea-
tures to determine the optimal multi-scale fusion strategy.
Table 3 compares performance across all branch combina-
tions. F1+F2+F3 fusion delivers optimal performance, val-
idating our design choice to utilize features from the first
three encoder outputs for multi-scale branch processing.
Notably, F2+F3 provides competitive performance with re-
duced computational cost, while individual feature configu-
rations consistently underperform.
LR-ASPP decoder channel analysis. We examine how
the decoder’s internal channel dimension affects LR-ASPP
performance. Table 4 shows performance, FLOPs, and pa-
rameters across different channel configurations. Our ex-
periments demonstrate that 128 decoder channels deliver
the best segmentation accuracy while maintaining computa-
tional efficiency. Increasing channels beyond 128 decreases
performance while dramatically increasing computational
overhead. For example, 1024 channels achieves the second-
best mIoU but still underperforms 128 channels while re-
quiring 2.4× more parameters and 7.7× more FLOPs.
Classification feature source evaluation. We examine
which encoder stage provides optimal features for dietary
classification. Table 4 compares performance across differ-
ent encoder stage selections. Stage 4 features achieve the
best segmentation performance and perfect classification
accuracy, validating our design choice. In contrast, Stage
2 and Stage 3 show progressively reduced performance de-
spite requiring fewer parameters.
Hybrid attention pattern evaluation. We systematically
test different combinations of locally-grouped self-attention
(L) and efficient multi-head attention (E) to identify the op-
timal hybrid pattern. Table 4 compares results across six at-
tention configurations. EL-EL-EL-EL pattern achieves the
highest performance, slightly outperforming our initial LE-
LE-LE-LE baseline. Pure attention patterns demonstrate in-
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Configuration mIoU
(%)↑

Diet Acc.
(%)↑

Params
(M)↓

FLOPs
(G)↓

Decoder Head Types

All-MLP [30] 73.42 99.94 3.548 7.591
FCN Head [11] 71.23 99.94 3.416 7.303
ISA Head [6] 70.02 100.0 4.666 3.337
ANN Head [37] 70.67 100.0 5.599 3.695
LR-ASPP [5] 73.65 100.0 3.348 3.508

LSA Feed-Forward Network

Regular FFN 72.07 100.0 3.065 3.471
MixFFN 73.65 100.0 3.085 3.508

LR-ASPP Multi-Scale Feature Fusion

F1 only 72.70 100.0 3.256 3.323
F1+F2 72.39 100.0 3.285 3.443
F2 only 72.55 100.0 3.261 3.407
F2+F3 72.78 100.0 3.326 3.140
F1+F3 72.60 100.0 3.319 3.387
F3 only 72.34 100.0 3.297 3.019
F1+F2+F3 73.65 100.0 3.348 3.508

Table 3. Foundation architecture component studies establishing
core design choices through systematic optimization of decoder
head, LSA feed-forward network, and multi-scale feature fusion.

ferior performance, particularly all local attention configu-
rations. This validates that hybrid attention design is cru-
cial, where efficient attention captures global context first,
followed by local attention refinement.
Loss function comparison. We evaluate the effectiveness
of Gaussian Plume Weighted Dice Loss [36] against stan-
dard segmentation losses including Cross Entropy, Dice,
and Focal loss for segmentation, while maintaining Cross
Entropy for classification. Table 5 shows the results for
this comparison. Gaussian Plume loss achieves the highest
performance at 73.97% mIoU, outperforming all traditional
loss functions. While Dice loss achieves perfect classifi-
cation accuracy, its segmentation performance lags behind
by 1.4 percentage points. Focal loss demonstrates the poor-

Configuration mIoU
(%)↑

Diet Acc.
(%)↑

Params
(M)↓

FLOPs
(G)↓

LR-ASPP Channel Scaling

128 ch 73.65 100.0 3.348 3.508
256 ch 72.32 100.0 3.644 4.729
512 ch 72.37 100.0 4.630 9.309
768 ch 72.97 99.38 6.140 16.741
1024 ch 73.03 99.77 8.174 27.025
2048 ch 72.72 100.0 21.555 96.684

Classification Feature Source

Encoder Stage 4 73.65 100.0 3.348 3.508
Encoder Stage 3 69.52 100.0 3.323 3.508
Encoder Stage 2 71.91 100.0 3.299 3.508

Hybrid Attention Pattern Analysis†

LE-LE-LE-LE 73.65 100.0 3.348 3.508
EL-EL-EL-EL 73.69 98.70 3.348 3.508
LL-LL-LL-LL 68.97 98.59 3.113 3.214
EE-EE-EE-EE 73.17 100.0 3.582 3.802
LL-LL-EE-EE 70.56 99.77 3.319 3.259
EE-EE-LL-LL 73.60 100.0 3.376 3.757

Table 4. Architecture refinement and pattern optimization studies
including decoder channel scaling, classification feature source se-
lection, and systematic evaluation of hybrid attention patterns.

Configuration mIoU
(%)↑

Diet Acc.
(%)↑

Params
(M)↓

FLOPs
(G)↓

Loss Function Comparison

Cross Entropy Loss 73.69 98.70 3.348 3.508
Dice Loss 72.57 100.0 3.348 3.508
Focal Loss 70.33 98.65 3.348 3.508
Gaussian Plume Loss 73.97 99.44 3.348 3.508

LSA Window Size Optimization

7×7 73.97 99.44 3.348 3.508
5×5 74.47 100.0 3.348 3.428
3×3 74.35 100.0 3.348 3.367

Table 5. Task-specific loss and parameter optimization studies
comparing segmentation losses and LSA window size refinement.

est performance across both tasks. This demonstrates that
domain-specific physical modeling particularly benefits the
segmentation task by leveraging the inherent characteristics
of gas plume dynamics.
LSA window size optimization. Finally, we analyze the
influence of LSA window size using our best configuration
with EL-EL-EL-EL pattern and Gaussian Plume loss. Ta-
ble 5 compares performance and efficiency across differ-
ent window sizes. Our analysis reveals that 5× 5 windows
achieve the highest performance at 74.47% mIoU, outper-
forming both 3× 3 and baseline 7× 7 windows. The 5× 5
size provides optimal balance between local receptive field
coverage and computational efficiency. Moderate window
sizes prove most effective for capturing gas plume local
structures.

6. Conclusion

We presented GasTwinFormer, a hybrid vision transformer
for livestock methane emission segmentation and dietary
classification. Comprehensive benchmarking on our beef
cattle methane dataset demonstrates that GasTwinFormer
outperforms all state-of-the-art methods, achieving superior
segmentation and dietary classification performance with
significantly fewer computational requirements. Extensive
ablation studies validate our architectural design choices.
While our current study focuses on beef cattle, the archi-
tecture is directly extensible to other ruminant species in
free-range grazing and broader gas detection contexts by
fine-tuning window sizes and training on species-specific
OGI data. This work establishes a strong foundation for
automated livestock emission monitoring and climate miti-
gation applications.
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Zhang, Karl Seltzer, Muye Ru, Rithik Castelino, Greg Falu-
vegi, et al. Global methane assessment: Benefits and costs
of mitigating methane emissions. Technical report, United
Nations Environment Programme, 2021. 1

[22] Luis Orlindo Tedeschi, Adibe Luiz Abdalla, Clementina Al-
varez, Samuel Weniga Anuga, Jacobo Arango, Karen A
Beauchemin, Philippe Becquet, Alexandre Berndt, Robert
Burns, Camillo De Camillis, et al. Quantification of methane
emitted by ruminants: a review of methods. Journal of Ani-
mal Science, 100(7):skac197, 2022. 1

[23] Teledyne FLIR. FLIR G-Series: Gx320, G620, Gx620 Op-
tical Gas Imaging (OGI) Cameras for Hydrocarbons. Tele-
dyne FLIR, LLC, 2023. Datasheet. 4

[24] Ao Wang, Hui Chen, Zijia Lin, Jungong Han, and Guiguang
Ding. Repvit: Revisiting mobile cnn from vit perspective.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15909–15920, 2024.
5, 6

[25] Jingfan Wang, Lyne P Tchapmi, Arvind P Ravikumar, Mike
McGuire, Clay S Bell, Daniel Zimmerle, Silvio Savarese,

9



and Adam R Brandt. Machine vision for natural gas methane
emissions detection using an infrared camera. Applied En-
ergy, 257:113998, 2020. 1, 2

[26] Jingfan Wang, Jingwei Ji, Arvind P Ravikumar, Silvio
Savarese, and Adam R Brandt. Videogasnet: Deep learning
for natural gas methane leak classification using an infrared
camera. Energy, 238:121516, 2022. 2

[27] Jiayang Lyra Wang, Brenna Barlow, Wes Funk, Cooper
Robinson, Adam Brandt, and Arvind P Ravikumar. Large-
scale controlled experiment demonstrates effectiveness of
methane leak detection and repair programs at oil and gas fa-
cilities. Environmental Science & Technology, 58(7):3194–
3204, 2024. 1

[28] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 568–578, 2021. 2

[29] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 5, 6

[30] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in neural information processing systems, 34:
12077–12090, 2021. 1, 2, 3, 4, 5, 6, 8

[31] Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, and
Elisa Ricci. Transformer-based attention networks for
continuous pixel-wise prediction. In Proceedings of the
IEEE/CVF International Conference on Computer vision,
pages 16269–16279, 2021. 1, 2

[32] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 325–341, 2018. 5, 6

[33] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu,
Chunhua Shen, and Nong Sang. Bisenet v2: Bilateral net-
work with guided aggregation for real-time semantic seg-
mentation. International Journal of Computer Vision, pages
1–18, 2021. 5, 6

[34] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping
Shi, and Jiaya Jia. Icnet for real-time semantic segmenta-
tion on high-resolution images. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 405–
420, 2018. 5, 6

[35] Chuanyang Zheng. iformer: Integrating convnet and
transformer for mobile application. arXiv preprint
arXiv:2501.15369, 2025. 5, 6

[36] Jiani Zhou, Yang Liu, Yong Zhang, Haotian Hu, Zenan Leng,
Feng Sun, and Chen Chen. High-accuracy combustible gas
cloud imaging system using yolo-plume classification net-
work. Frontiers in Physics, 13:1603047, 2025. 4, 8

[37] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-
ang Bai. Asymmetric non-local neural networks for semantic

segmentation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 593–602, 2019. 7, 8

10


	Introduction
	Related Work
	Method
	Mix Twin Encoder
	Hierarchical LR-ASPP Decoder
	Dietary Classification Head
	Gaussian Plume Weighted Dice Loss

	Beef Cattle Methane Emission Dataset
	Results
	Implementation Details
	Comparison with state-of-the-arts
	Ablation Studies

	Conclusion

