
Abstract—Analyzing and detecting cannabis seed variants is
crucial for the agriculture industry. It enables precision breed-
ing, allowing cultivators to selectively enhance desirable traits.
Accurate identification of seed variants also ensures regulatory
compliance, facilitating the cultivation of specific cannabis strains
with defined characteristics, ultimately improving agricultural
productivity and meeting diverse market demands. This paper
presents a study on cannabis seed variant detection by utilizing
Faster R-CNN, a two-stage object detection model, to accurately
detect and classify 17 distinct classes of cannabis seeds sourced
locally in Thailand. We evaluate six Faster R-CNN models by
comparing performance across key metrics and achieving a mAP
score of 94.08% and an F1 score of 95.66%. To our knowledge,
this paper presents the first known application of a deep neural
network-based object detection model to the novel task of visually
identifying variants of cannabis seeds.

Index Terms—Object Detection, Faster R-CNN, Cannabis,
Precision Agriculture

I. INTRODUCTION

Seed detection is vital in agriculture and horticulture to
ensure quality, purity, and genetic diversity. In cannabis cul-
tivation, it is particularly important due to the unique char-
acteristics and regulatory restrictions imposed by different
countries with this plant. The classification of cannabis into
distinct categories, such as marijuana or industrial hemp,
is primarily dependent on the threshold level of THC, the
psychoactive compound found in the plant. Although 1% THC
is typically considered enough to cause intoxication, many
jurisdictions establish the legal distinction between marijuana
and hemp at the 0.3% THC threshold [1]. The cultivation
of hemp is typically permitted only if it contains less THC
than this defined threshold. Therefore, accurately identifying
cannabis seeds with high or low THC content is essential for
regulatory compliance and distinguishing between marijuana
and industrial hemp [2].

Moreover, in recent years, Cannabis has seen legalization
in many countries in the world. The 2014 Farm Bill [3]
legalized hemp pilot programs in the United States for re-
search purposes, enabling the development of a domestic hemp
industry after decades of prohibition. In the years since this
policy change, it has proven economically beneficial for the
United States. As seen in the trade data, US imports of hemp
seeds, fibers, oils, and other ingredients have steadily risen,
totaling $67.3 million in 2017 [4]. Such legalization efforts

have suddenly increased the demand for Cannabis for various
purposes, such as recreational, medicinal, and industrial uses.
In the hemp industry, beyond its medicinal value, hemp plays
a pivotal role as a crucial resource for the manufacturing of
ropes, textiles, and paper [2]. The presence of undesired seeds
can lead to cross-pollination, resulting in undesirable traits
in the crop. Thus, identifying and detecting cannabis seeds
with different variants ensures uniform product quality and a
profitable yield.

Previous studies have applied a range of artificial intelli-
gence methods for different applications in cannabis agricul-
ture. For instance, Sieracka et al. [5] used artificial neural
networks to forecast industrial hemp seed yield based on
cultivation data. Bicakli et al. [6] demonstrated that random
forest models can distinguish illegal cannabis crops from other
vegetation in satellite imagery. In another study, Ferentinos et
al. [7] introduced a deep learning system using transfer learn-
ing to identify diseases, pests, and deficiencies in cannabis
plant images. Most recently, Boonsri et al. [8] applied deep
learning-based object detection models to detect male and
female cannabis seeds from augmented seed image datasets.
Despite the progress of deep learning in many agricultural
applications, its use for cannabis seed variety detection and
classification has garnered less attention. Therefore, the main
objective of this paper is to classify and detect seeds of 17
kinds of cannabis.

The rest of the paper is organized as follows. Section 2
explores the related work. Section 3 describes the dataset,
dataset preprocessing, training parameters, Faster R-CNN ar-
chitecture, loss functions, and evaluation metrics. Section 4
presents the experimental results, discusses the findings, and
compares the performance of the object detector. Finally,
Section 5 summarizes the conclusions from our work.

II. RELATED WORK

Seed identification has been tackled using traditional meth-
ods [9], [10], image processing-based techniques [11], [12],
and model-based approaches [13], [14]. Traditional methods
include manual inspection and biochemical and molecular
identification. The manual inspection methods rely on external
characteristics such as color, shape, and size of seeds [15].
However, seeds with similar external features can be challeng-
ing to classify accurately [9], [15]. The biochemical seed iden-
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tification method can recognize seeds with different genetic
characteristics; however, identifying closely related varieties is
challenging. The molecular seed identification methods used
DNA markers, and they show stability and independence
of environmental conditions in identifying seeds. However,
their identification process risks damaging the sample and
is expensive [10]. Image processing-based techniques include
morphological operations, thresholding, segmentation, feature
extraction, and texture analysis. Model-based approaches are
divided into two categories: traditional machine learning mod-
els such as logistic regression, random forest, and decision
tree. The second category encompasses deep learning models,
including the commonly used convolutional neural networks.

A. Image Processing in Seed Classification

Traditional image processing techniques have been widely
used for seed detection and analysis in previous research.
For example, Ahmad et al. [11] developed a model that
distinguishes between asymptomatic and symptomatic soybean
seeds based on color features. The methods used include RGB
color analysis, thresholding for segmentation, discriminant
analysis for feature selection, and linear discriminant classifi-
cation with unequal priors to identify different seed damage
types. Another study [12] proposed high-throughput methods
using image analysis to efficiently measure the morphological
and color traits of soybean seeds. The performance of tradi-
tional image processing pipelines depends heavily on extensive
tuning and feature engineering specific to each seed type. They
generalize poorly to unseen data and lack the learning capacity
to improve with more training data.

B. Machine Learning in Seed Classification

In recent years, there has been a lot of research carried out
by researchers on the application of machine learning to the
identification and classification of seeds and their other traits
[16]. Thu Hong et al. [13] introduced an automated classifica-
tion system for distinguishing rice seed varieties, crucial for
ensuring seed purity in rice production. The research employs
various feature extraction techniques, including morpholog-
ical, color, texture, GIST, and SIFT features, and evaluates
the performance of machine learning classifiers such as KNN,
SVM, and Random Forest. The results demonstrate that the
Random Forest method with basic feature extraction achieves
the highest 90.54% accuracy in classifying six rice varieties.
In another research [14], the authors trained Random Forest,
BayesNet, LogitBoost, and Multilayer Perceptron to classify
six corn seed varieties. Of all the classifiers, Multilayer Percep-
tron achieved the highest accuracy of 98.93% on seed images.
The effectiveness of supervised machine learning models relies
significantly on feature extraction techniques. Inadequate or
low-quality features can result in suboptimal performance.

C. Deep Learning in Seed Classification

Recent studies have begun leveraging deep learning for
automated seed detection and classification. In one study [17],

Fig. 1. Three different cannabis seed types. (a) AK47, (b) Gelato, and (c)
Gorilla Purple.

researchers used Faster R-CNN with various ResNet back-
bones to accurately detect, count, and discriminate germinated
and non-germinated parasitic plant seeds from images. In a
different study [18], researchers introduced a real-time, high-
throughput seed sorting system utilizing ResNet-18 image
classifier and a batch inference strategy to achieve high
speed (500 fps) and high accuracy. This approach separated
the object-detection task into localization and classification,
demonstrating superior sorting accuracy (99.58%) and purity
(99.994%) compared to commercial optical seed sorting sys-
tems. While deep learning has shown promising results for
seed analysis, there remain considerable challenges. Collecting
and annotating thousands of high-quality seed images needed
to train a model is labor-intensive, time-consuming, and ex-
pensive.

Existing cannabis agriculture research has utilized deep
learning to identify grow sites [19] and detect crop issues
and pests [20]. However, the ability of the deep learning
models to discriminate between cannabis seed varieties re-
mains unexplored. Although deep learning approaches have
shown promise for screening the gender of cannabis seeds [8],
the capability of these models to discriminate between seed
varieties has yet to be explored. Our work seeks to bridge
this research gap. In this paper, we use Faster R-CNN to
accurately detect and delimit the bounding box region of the
cannabis seed varieties. We evaluate the precision, recall, and
inference speed of the detector on the cannabis seed dataset
to assess their suitability and performance for this agricultural
application.

III. MATERIALS AND METHODS

A. Cannabis Seed Dataset

For this research, we select a cannabis seed variety dataset
[21] with 17 distinct classes. The seeds are locally available in
Thailand. To the best of our knowledge, this is the first open-
access dataset of cannabis seeds. The dataset contains 3335
high-resolution images of size 3023 x 4032 pixels, captured
with an Apple iPhone 13 Pro. We remove 16 images due
to their blurriness, leaving us with 3,319 images for this
experiment. The images are taken with a consistent white
background but with different lighting conditions and angles.
Figure 1 shows the samples of different cannabis seed variants.
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B. Dataset Preprocessing

Labeling each image manually is time-consuming and re-
quires human labor. Instead of manual data annotation, we use
Grounding DINO [22], an open-set object detector, to extract
bounding boxes from the dataset given an input text query.
Open-set object detectors can detect arbitrary object categories
rather than being limited to categories it was trained on.
Grounding DINO can generate multiple 2D bounding boxes
corresponding to an input image and noun phrases associated
with a given image-text pair. This allows us to extract object
boundaries from the dataset without needing to manually draw
boxes around each object instance.

After annotating the dataset, we split the dataset into train-
ing, validation, and test sets. We use 1771 images (∼53%)
to train our object detection models and 723 images (∼22%)
to validate the model during training time. The rest of the
825 images (∼25%) are held out to test the trained model’s
performance.

Data augmentation is a technique to increase the dataset size
when the data is limited. Applying various image transforma-
tions helps the model generalize unseen data during testing.
We use Albumentations [23] image augmentation library to ap-
ply geometric transformations, color transformations, and blur
operations on training images. The augmentation parameters
are as follows: random flips with 50% probability, maximum
image shift of 0.0625, maximum scale change of 0.1, and
maximum rotation angle of 45 degrees. The parameters also
include randomly changing brightness and contrast within the
range of 0.1 to 0.3 with a 20% probability, random shifts to
RGB channels by up to 10 intensity levels each, as well as
maximum hue, saturation, and value shifts of 20, 30 and 20,
respectively, for 10% of the images. Additional augmentation
parameters include a 10% probability of applying channel
shuffling and a 10% probability of applying either random
blur or median blur with a maximum kernel size of 3 during
image augmentation.

C. Training

We use PyTorch [24] and MMDetection [25] to train Faster
R-CNN models on an NVIDIA RTX 3090 GPU. We initialize
Faster R-CNN with weights from detection models previously
trained on the COCO dataset. The models are then fine-
tuned with the training dataset for 100 epochs with stochastic
gradient descent optimization. A learning rate of 0.02 and 0.01
is used for Faster R-CNN along with a weight decay of 0.0001
and momentum of 0.9. We resize all images to a width of
360 and a height of 640 dimensions to serve as input to the
models. The batch sizes for training, validation, and testing
are configured as 2, 1, and 1, respectively.

D. Faster R-CNN Network Architecture

ResNet-50 [26] model pre-trained on ImageNet is used as
the backbone of the Faster R-CNN network. The backbone
is the initial processing layer in which features are extracted
from the input image at several intermediate levels and act
as the bottom-up pathway for the feature pyramid network.

Feature pyramid network [27] selects features generated from
the last residual blocks from conv2, conv3, conv4, and conv4
of the ResNet 50 backbone to define the pyramid level. Our
FPN has four lateral 1x1 convolutions, which merge with
the upsampled top-down pathway and reduce the four output
feature maps [256, 512, 1024, 2048] from the bottom-up
pyramid levels to fixed 256-channel outputs. We apply four
3x3 convolutions, each taking the merged feature map as
input and outputting a 4-level feature pyramid, with each
level having a 256-channel feature map. Feature maps from
the FPN are then forwarded to the Region Proposal Network
(RPN) [28]. RPN operates by sliding a small network on the
feature maps extracted from the feature pyramid. Our RPN
head utilizes a 3x3 convolution with 256 channels followed by
ReLU activation to process the 256-channel feature map from
the convolutional layer as input. For each sliding window, our
anchor generator uses one scale (8) and three aspect ratios (1:2,
1:1, 2:1) to generate regional proposals. Each region proposal
is then passed to a 1x1 256-channel convolution layer for
classification and another parallel 1x1 12-channel convolution
layer to regress the bounding box coordinates. We apply non-
maximum suppression (NMS) based on their classification
scores to reduce redundancy among region proposals. We set
the IoU threshold for NMS to 0.7, retaining a maximum of
1000 region proposals per image and removing boxes with
high overlap.

The region proposals are then fed into the Fast R-CNN
branch that extracts features using 4 ROI Align [29] layers
to output a fixed size 7x7 features for each proposal. The
feature vector is fed into two fully connected layers: a softmax
layer to predict the class score with cross-entropy loss and
regression layers to predict the bounding box location. If
the IoU is greater than the IoU threshold value of 0.5, the
proposal is identified as a positive result. In the bounding box
regressor layer, we use five different loss functions, including
L1 loss, IoU loss, Generalized IoU (GIoU) loss [30], Distance
IoU (DIoU) loss [31], and Complete IoU (CIoU) loss [32] to
minimize the loss for the regression layer.

E. Loss Functions

The five loss functions we use in the bounding box regres-
sion layer of Faster R-CNN are defined as follows:

1) L1 loss: L1 loss calculates the absolute difference be-
tween the coordinates of the ground truth bounding box and
the predicted bounding box. It is defined as,

LL1 =

∑n
i=1

∣∣BG −BP
∣∣

n
(1)

From (1), L1 loss is the ratio of the sum of absolute
differences between the ground truth bounding box BG and
the predicted bounding box BP divided by the total number
of elements n. The range of L1 loss is 0 ≤ LL1 ≤ ∞.

2) IoU loss: Intersection over Union (IoU) is a metric that
compares the similarity between two arbitrary shapes. The
IoU computation for the ground truth bounding box BG and
predicted bounding box BP is defined as
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TABLE I
MEAN AVERAGE PRECISION, AVERAGE RECALL, F1 AND REAL-TIME INFERENCE RESULTS FOR FASTER R-CNN

Model mAP @ IoU:0.50:0.95 mAP @ IoU:0.50 Average Recall F1 Inference Speed (ms) FPS
mBaseline 0.9168 0.9235 0.951 0.9336 55.6 18

mL1 0.9408 0.9428 0.973 0.9566 59.5 16.8
mIoU 0.9388 0.9431 0.969 0.9537 57.5 17.4

mGIoU 0.9359 0.9396 0.964 0.9497 66.7 15
mDIoU 0.938 0.9428 0.969 0.9532 61 16.4
mCIoU 0.9365 0.9412 0.963 0.9496 57.8 17.3

IoU =

∣∣BG ∩BP
∣∣

|BG ∪BP |
(2)

It is the area of the intersection of BG and BP divided by
the union area of BG and BP defined in (2). Therefore, (3)
defines the IoU loss as

LIoU = 1− IoU (3)

The range of IoU is 0 ≤ IoU ≤ 1, and LIoU is 0 ≤
LIoU ≤ 1.

3) GIoU loss: IoU loss can not tell if the two bounding
boxes are close or far from each other if there is no intersection
between the ground truth and predicted bounding boxes. In
non-overlapping cases, the gradient of IoU loss becomes zero.
However, the GIoU loss [30] solves the vanishing gradient
issue for non-overlapping cases by penalizing based on the
smallest enclosing box covering both predicted and target
boxes, moving the prediction toward the target. The equation
for GIoU loss is

LGIoU = 1−GIoU = 1− IoU +
AC\

(
BG ∪BP

)
AC

(4)

AC is the area of the smallest enclosing rectangles of the
two bounding boxes in (4), and it acts as a penalty term to
move the predicted bounding box closer to the ground truth
bounding box. The range of GIoU is −1 ≤ GIoU(BG, BP ) ≤
1, and the range of LGIoU is 0 ≤ LGIoU ≤ 2. Despite
resolving the vanishing gradient issue for non-overlapping
boxes, GIoU loss converges slowly and struggles with precise
bounding box regression.

4) DIoU loss: DIoU loss [31] minimizes the distance
between the center points of the ground truth bounding box
and the predicted bounding box. It is defined as

LDIoU = 1− IoU +
ρ2 (bp, bg)

c2
(5)

From (5), bp and bg denote the central coordinates of the
ground truth and predicted bounding box, with c measuring
the diagonal distance of the smallest box covering both boxes.
ρ2(bp, bg) calculates the Euclidean distance between the cen-
tral points of bp and bg . DIoU loss minimizes the distance
between the ground truth and predicted bounding box centers,
converging faster than GIoU loss.

5) CIoU loss: CIoU loss [32] considers the overlap area,
central point distance, and aspect ratio for regressing the
bounding box coordinates. CIoU loss is based on DIoU loss
and adds an aspect ratio parameter defined as

LDIoU = 1− IoU +
ρ2 (bp, bg)

c2
+ αV (6)

In (6), V measures the consistency of the aspect ratio, and
α is the trade-off parameter. When IoU between predicted and
ground truth boxes is less than 0.5, CIoU loss reverts to DIoU
loss. This behavior reflects that the consistency of the aspect
ratio is not essential when there is minimal overlap between
two boxes. Conversely, when IoU is greater or equal to 0.5,
the consistency of the aspect ratio becomes critical, and CIoU
loss refines the localization accuracy through the aspect ratio
parameters αV .

F. Evaluation Metrics

We use mean average precision (mAP), recall, and F1
[33] evaluation metrics to evaluate the performance change
in our object detection models. mAP is the most commonly
used metric to assess the performance of our object detection
models. It has three parameters: IoU, precision, and recall.
We evaluate our models using a range of IoU thresholds,
from 0.50 to 0.95 in 0.05 increments. As the IoU threshold
increases, the criterion for considering a predicted bounding
box as a true positive becomes stricter and requires a high
overlap for a detection to be considered positive. For each IoU
threshold, we calculate precision and recall. Precision is the
ratio of correctly predicted true positives to the total predicted
positives. True Positives are the seeds with an IoU value
greater than a given threshold, with correctly identified class
labels. Consequently, false positives are seeds with an IoU
less than the IoU threshold or the class label of the predicted
bounding box is incorrect. Recall is the ratio between the true
positive and the total positive samples. Here, false negatives
are the seeds that are incorrectly predicted as negatives by
the model. Specifically, mAP is calculated by computing the
average precision for individual seed classes and averaging the
average precision across all classes. Additionally, we report
F1 scores. F1 is the harmonic mean of precision and recall.
The harmonic mean gives more weight to small values, which
means if the recall or precision score is low, it will lower the
F1 score.

IV. EXPERIMENTAL EVALUATION

This section will present a detailed description of the Faster
R-CNN model’s performance on the evaluation metrics. We
evaluate our experiments with the six different Faster R-CNN
models we trained, 1) a baseline model trained with no image
augmentation and L1 loss (mBaseline), 2) with image augmen-
tation and L1 loss (mL1), 3) with image augmentation and IoU
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TABLE II
CLASSWISE MAP AT IOU THRESHOLD .50 ≤ IoU ≤ .95 AND AT IOU THRESHOLD .50

mAP @ IoU:0.50:0.95 mAP @ IoU:0.50
Class mBasline mL1 mIoU mGIoU mDIoU mCIoU mBasline mL1 mIoU mGIoU mDIoU mCIoU
AK47 0.984 0.984 0.988 0.989 0.987 0.986 0.985 0.984 0.988 0.989 0.988 0.987
BBA 0.992 0.99 0.993 0.991 0.992 0.99 0.998 0.995 0.998 0.998 0.998 0.998
CP 0.291 0.399 0.366 0.337 0.377 0.352 0.296 0.403 0.369 0.343 0.387 0.355

GELP 0.951 0.956 0.966 0.957 0.963 0.958 0.957 0.956 0.966 0.957 0.964 0.959
GP 0.926 0.972 0.975 0.971 0.976 0.971 0.946 0.978 0.982 0.978 0.984 0.981

HKRKU 0.998 1 1 0.998 0.999 1 1 1 1 0.999 1 1
HKRPPST1 0.934 0.957 0.954 0.954 0.959 0.952 0.949 0.959 0.959 0.956 0.965 0.959
HSSNTT1 0.947 0.949 0.967 0.976 0.968 0.967 0.949 0.949 0.968 0.977 0.969 0.967

KDKT 0.952 0.975 0.97 0.964 0.966 0.971 0.953 0.975 0.972 0.964 0.966 0.971
KD 0.925 1 0.987 1 0.987 0.985 0.933 1 1 1 1 1

KKV 0.953 0.995 0.989 0.986 0.988 0.987 0.954 0.999 0.994 0.994 0.994 0.993
PD 0.995 0.999 0.995 0.997 0.996 0.996 1 1 1 1 1 1

SDA 0.999 1 1 0.998 0.999 1 1 1 1 1 1 1
SKA 0.973 0.976 0.973 0.975 0.974 0.984 0.979 0.977 0.976 0.976 0.977 0.987
TFT 0.987 0.996 0.995 0.996 0.996 0.995 1 1 1 1 1 1

TKDRD1 0.841 0.869 0.888 0.867 0.866 0.863 0.847 0.873 0.895 0.877 0.871 0.871
TKKWA1 0.938 0.976 0.953 0.955 0.953 0.964 0.954 0.98 0.965 0.966 0.965 0.972

loss (mIoU), 4) with image augmentation and Generalized IoU
loss (mGIoU), 5) with image augmentation and Distance IoU
loss (mDIoU), and 6) with image augmentation and Complete
IoU loss (mCIoU).

Table I gives a comparison of the six Faster R-CNN models,
evaluating their performance across various key metrics. The
metrics include mAP at different IoU thresholds, specifically
from 0.50 to 0.95 in increments of 0.05, mAP at IoU:0.50,
Average recall, and F1 score. Our mBaseline model serves
as a reference point for evaluating the performance of the
other models. The mL1 model demonstrates the highest mAP
at IoU:0.50:0.95, with values of 0.9408. Additionally, the
mL1 model achieves the highest average recall of 0.973. The
mIoU, mGIoU, mDIoU, and mCIoU models exhibit relatively
similar performance levels at IoU:0.50. However, the mIoU
model demonstrates the highest mAP at IoU threshold 0.50
with a value of 0.9431. The mL1 model achieves the top F1
score of 0.9566, exhibiting strong precision-recall balance. The
mIoU model follows closely with a 0.9537 score, while the
mBaseline model, without any image augmentation applied
during the training, lags significantly at 0.9336 F1 measure.
Overall, the mL1 model stands out as the most effective among
the listed models, offering the highest mAP, recall, and F1
values, which suggests that mL1 excels in capturing objects
with varying levels of spatial overlap.

The classwise mAP@0.50:0.95 and mAP@0.50 of cannabis
seed variants are shown in Table II. In terms of the broader IoU
range (0.50:0.95), all loss functions perform quite similarly,
with mL1 and mIoU slightly outperforming the mGIoU,
mDIoU, and mCIoU on average across classes. However,
mL1 overall achieves the best performance, with the highest
mAP scores for 9 out of the 17 classes. When looking at
mAP specifically for an IoU threshold of 0.50, no single
loss function dominates the performance across classes. The
analysis of the provided tables reveals an interesting pattern
regarding the L1 loss function, which consistently yields the
highest mAP scores across nine out of the seventeen classes
in both IoU threshold scenarios. Moreover, ‘CP’ exhibits the

biggest mAP boost from using L1 loss compared to the
mBaseline, increasing mAP by 37.11% at high IoU and by
36.15% at IoU 0.50. This suggests that L1 regression loss
provides advantages for improving the localization of this
more challenging class.

Fig. 2. mAP vs Inference Speed of Faster R-CNN Models

We see a tradeoff between accuracy and speed while com-
paring the mAP and inference speeds of the Faster R-CNN
models in Table I. The best-performing mL1 lags in inference
speed by 6.67% compared to the fastest mBaseline model.
However, Figure 2 depicts that mIoU strikes the best balance
by achieving the second-highest mAP (0.9388) after mL1 and
an inference speed of 57.5 ms, which is faster than the top-
performing mL1 model. The small compromise in speed in
mIoU compared to the fastest mBaseline is justified by sizable
gains in detection precision. Therefore, mIoU provides the best
tradeoff when both accuracy and real-time performance need
to be optimized.

V. CONCLUSION

This experimental evaluation of Faster R-CNN models for
cannabis seed variant detection unveils nuanced insights into
their performance across key metrics. The mL1 model emerges
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as the most effective, showcasing superior mAP at various IoU
thresholds, with a peak value of 0.9408. Notably, mL1 also
excels in average recall and achieves the highest F1 score of
0.9566, indicating a commendable balance between precision
and recall. While advanced loss functions like Generalized
IoU, Distance IoU, and Complete IoU offer marginal improve-
ments, the L1 loss consistently yields the highest mAP scores
across a majority of seed classes, revealing its robust perfor-
mance across evaluation scenarios. Real-time inference perfor-
mance reveals a trade-off between accuracy and speed, with
the mBaseline model being the fastest but less accurate, while
mGIoU sacrifices speed for enhanced precision. This analysis
provides valuable insights for practitioners, emphasizing the
importance of selecting an appropriate loss function based
on specific priorities such as accuracy requirements and real-
time processing constraints in cannabis seed variant detection
applications. In the future, we aim to expand this research and
implement a vision transformer model for detecting cannabis
seed variants on a more robust dataset.
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